拡径比の異なる杭の引抜き特性 その3:再現解析による抵抗メカニズムの検討

拡底杭 引抜き抵抗 有限要素法

京都大学大学院	学生会員	Ochristian SAWADOGO
京都大学大学院	学生会員	Ben M. LEWIS
京都大学大学院	国際会員	澤村 康生
ジャパンパイル	正会員	藤江 雄大
ジャパンパイル	正会員	橋立 健司

1. はじめに

過去に筆者らは,直杭と拡径比 2.00 のケースについ て、3次元弾塑性有限要素法を用いた遠心載荷試験の再 現解析を実施し,両者の引抜き挙動について検討を行 った¹⁾.本報告では,拡径比の異なる全ての模型に対 して再現解析を実施し,拡径比と引抜き抵抗メカニズ ムの関係について考察する.

2. 解析の概要1)

本研究では、3次元弾塑性有限要素解析プログラム DBLEAVES²⁾を用いて遠心模型実験の再現解析を実施 した. 図-1 に解析メッシュを示す. 解析領域は対称性 を考慮して 1/4 断面とした.境界条件の設定において は、引抜き荷重を載荷した際に杭が傾くことを防ぐた め, 杭は水平方向に変位が発生しない条件とした. 地 盤の構成式には, subloading tij model³⁾を用いた.表-1に 本構成式のおける豊浦砂の材料定数を示す. 杭は弾性 Solid 要素でモデル化し、弾性係数は $E = 2.0 \times 10^8 \text{ kN/m}^2$ とした. 杭と地盤の境界部分には、地盤の滑りと剥離 を考慮するために Joint 要素を用いた. 同名報告 (その 2)より、杭模型表面の摩擦抵抗の大小により、引抜き 荷重が大きく異なることが確認されている. しかし本 研究では、Joint 要素の剛性と Mohr-Coulomb の破壊規 準に関するパラメータは、モルタルと豊浦砂の一面せ ん断試験⁴⁾を参考に決定し(表-2), 拡径比の違いによ る引抜き抵抗メカニズムを解明することに主眼をおい た. 引抜き荷重は、杭頭に強制変位として与え、0.01 mm/step で引き抜いた.

解析対象は, 拡径比 (角度)が 1.00 (0 degree), 1.25 (3 degree), 1.5 (6 degree), 1.75 (9 degree), 2.00 (12 degree), 2.25 (15 degree) の全模型とし, 地盤の相対密度は *D*_r = 90%の条件とした.

3. 解析結果

図-2 に遠心模型実験と数値解析における杭頭部の荷 重変位関係を示す.ここで実験値については,杭模型 表面の摩擦抵抗が大きいケースと小さいケースの両方 を示している.また,横軸の変位については鉛直変位 そのものを用いており,拡径部の径によって正規化は 行っていない.図-2より,解析値は実験と比較して拡 底比による影響が小さい傾向を示している.この要因 のひとつは,杭模型と地盤の境界部に配した Joint 要素

Pull up resistance of various belled piles, Part 3: Investigation of resistance mechanism through numerical analyses

表-1 数値解析に用いた地盤のパラメータ

Principal stress ratio at critical state $R_{cs} = (\sigma_I / \sigma_3)_{CS(comp.)}$	3.2
Compression index λ	0.07
Swelling index κ	0.0045
$N = e_{NC}$ at $p = 98$ kPa & $q = 0$ kPa	1.10
Poisson's ratio v_e	0.333
Influence of density and confining pressure a	60
Shape of yield surface β	2.0

表-2 Joint要素入力パラメータ

Shear stiffness K_s [kN/m ² /m]	1.0×10 ⁵
Normal stiffness K_n [kN/m ² /m]	1.0×10 ⁵
Cohesion $c [kN/m^2]$	0.0
Internal friction angle ϕ [deg]	28.0
Tension strength of axial direction σ_r [kN/m ²]	-0.5
Separation displacement criterion v_{mc} [m]	5.0×10 ⁻⁶

のパラメータであると考えられることから,要素試験 等を実施して,パラメータを決定する必要性を示唆し ている.しかしながら,解析においても拡径比が大き なケースで大きな引抜き荷重が発生しており,杭の引 抜き挙動を定性的に表現できていると考えられる.

図-3 に 0.1 m 変位時における X-Z 面のせん断応力分 布を示す. 直杭の場合に着目すると,拘束圧の大きい 杭先端部の周面において,せん断応力が大きくなって いる箇所が発生した. 一方拡径比が 1.25 以上になると,

Sawadogo C., Lewis B., Sawamura Y. Kyoto University Fujie Y., Hashidate K. JAPAN PILE Co

図-4 0.1 m変位時におけるX-Z面の鉛直応力増加分布

拡径部分を中心に大きなせん断ひずみが発生している. 拡径比が小さい場合には、杭の近傍のみで大きなせん 断ひずみが発生するが、拡径比が大きくなると、右斜 め上方にせん断ひずみの分布が拡大する.

図-4には、0.1 m 変位時における鉛直応力の増分を示 す.ここで、鉛直応力の増分とは、地盤の初期応力か らの増分量を示している.直杭の場合には、引抜抵抗 は周面摩擦力のみに起因しているため、図-4 に示すせ ん断応力と同様、応力変化は杭近傍のみで発生してお り、地盤内の鉛直応力の増加量は小さい.一方、拡底 杭の場合は、拡径部における支圧抵抗が大きいため、 拡径部上部の鉛直応力が増加している.またこの傾向 は拡径比が大きいケースで顕著である.これにより、 大きな引抜き抵抗力を示したのだと考えられる.

5. まとめ

本研究では、3次元弾塑性有限要素解析により、遠心力 50G 場における引抜き試験の再現解析を実施した.

その結果, 拡径比が大きくなると, 地盤中に斜め上方 にせん断ひずみの分布すること, 拡径部上部の鉛直土 圧が増加していることから, 広範囲で引抜きに抵抗し ていることがあきらかとなった.

【参考文献】

- Ben M LEWIS, Bonngab KIM, 澤村康生, 藤江雄大, 橋立健司: 拡底杭の引抜特性に関する遠心載荷試 験一その3: FEM による再現解析, 第52 回地盤 工学研究発表会, pp.1181-1182, 2017.
- Ye, B., Ye, G. L., Zhang, F. and Yashima, A. : Experiment and numerical simulation of repeated liquefaction-consolidation of sand, *Soils and Foundations*, Vol.47, No.3, pp.547-558, 2007.
- Nakai, T. and Hinokio, M. : A simple elastoplastic model for normally and over consolidated soils with unified material parameters, *Soils and Foundations*, Vol.44, No.2, pp.53-70, 2004.
- (4) 澤村康生:盛土内に設置されたカルバートの耐震 性に関する基礎的研究,京都大学学位論文,2014.