E-04 第 52 回地盤工学研究発表会 (名古屋) 2017 年 7 月

拡底杭の引抜特性に関する遠心載荷試験―その3:FEMによる再現解析

拡底杭 引抜き抵抗 有限要素法

京都大学大学院	学生会員	OBen M. LEWIS
京都大学大学院	学生会員	Bonggab KIM
京都大学大学院	国際会員	澤村 康生
ジャパンパイル	正会員	藤江 雄大
ジャパンパイル	正会員	橋立 健司

1. はじめに

同名報告 (その 1), (その 2) では, 遠心力 50G 場で 実施した拡底杭の引抜き試験について示した.本報告 (その 3) では, 3 次元弾塑性有限要素法を用いた遠心載 荷試験の再現解析について示す.

2. 解析の概要

本研究では、3 次元弾塑性有限要素解析プログラム DBLEAVES¹⁾を用いて遠心模型実験の再現解析を実施 した. 図-1 に解析メッシュを示す. 解析領域は遠心模 型実験における土槽内部と同様とし、対称性を考慮し て 1/4 断面とした. 地盤の構成式には, subloading tij model²⁾を用いた.表-1 に本構成式のおける豊浦砂の材 料定数を示す. 杭は弾性 Solid 要素でモデル化し, 弾性 係数は $E = 2.0 \times 10^8 \text{ kN/m}^2$ とした. 杭と地盤の境界部分 には、地盤の滑りと剥離を考慮するために Joint 要素を 用いた. Joint 要素の剛性と Mohr-Coulomb の破壊規準 に関するパラメータは、モルタルと豊浦砂の一面せん 断試験³⁾を参考に決定した(**表-2**). ただし, V_{mc}(分 離と閉合の変位の判断値)との(引張強度)は直接決 定することが困難であるため、パラメトリックスタデ ィにより決定した.引抜き荷重は,杭頭に強制変位と して与え, 0.01 mm/step で 750 mm まで引き抜いた.

本研究では,特に Case-1:直杭と Case-3: 拡底杭 (拡底比 2)の結果について示し,両者の引抜き抵抗力 発現メカニズムについて考察する.

3. 実験結果と再現解析

図-2 に遠心模型実験と数値解析における杭頭部の荷 重変位関係を示す.ここで、δは引抜き変位、Dは杭先 端部の杭径(Case-1:1000 mm, Case-3:2000 mm)を表し ている.解析値は Case-1:直杭では実験値よりも小さ いが、逆に Case-3:拡底杭では実験値より大きくなり、 差異が確認できる.しかし、直杭において最大引抜き 力を示した後に荷重が横ばいになる点、拡底杭におい ては変位の増大に伴って載荷終了時まで引抜き荷重が 増加する点については、実験の傾向をとらえていると 考えられる.

図-3 に引抜変位 *δD* = 0.1 において杭に発生する軸力 の分布を示す.図-2 に示した荷重変位関係と同様,軸 力の絶対値については実験と解析で相違が見られるが,

Centrifuge model test on uplift capacity of belled piles (Part3: Finite Element analysis)

表-1 数値解析に用いた地盤のパラメータ

Principal stress ratio at critical state $R_{cs} = (\sigma_I / \sigma_3)_{CS(comp.)}$	3.2
Compression index λ	0.07
Swelling index κ	0.0045
$N = e_{NC}$ at $p = 98$ kPa & $q = 0$ kPa	1.10
Poisson's ratio v_e	0.333
Influence of density and confining pressure a	60
Shape of yield surface β	2.0

表-2 Joint要素入力パラメータ

Shear stiffness K_s [kN/m ² /m]	1.0×10 ⁵
Normal stiffness K_n [kN/m ² /m]	1.0×10 ⁵
Cohesion c [kN/m ²]	0.0
Internal friction angle ϕ [deg]	28.0
Tension strength of axial direction σ_t [kN/m ²]	-0.5
Separation displacement criterion v_{mc} [m]	5.0×10 ⁻⁶

実験の傾向をおおよそ再現していると考えられる.特 に拡底杭において、杭先端から拡底部分にかけて急激 に軸力が増加している点は実験をよくとられている.

4. 引抜き抵抗力の発現メカニズム:地盤内の応力分布 以下では再現解析における地盤内部の応力分布を示

 し、引抜き抵抗力の発現メカニズムについて考察する.
図-4には、引抜変位δD = 0.1におけるせん断応力の 分布を示す. 直杭の場合は、地盤内部のせん断応力は

LEWIS B., KIM B., SAWAMURA Y. Kyoto University FUJIE Y., HASHIDATE K. JAPAN PILE Co

杭の近傍のみで変化し、さらに発生するせん断力も小 さい.一方拡底杭の場合では、拡底部の支圧抵抗によ り、拡底部を中心に右斜め上方にせん断力が増加して いる.

図-5 には、引抜変位 δD = 0.1 における鉛直応力の増 分を示す.ここで、鉛直応力の増分とは、地盤の初期 応力からの増分量を示している.直杭の場合には、引 抜抵抗は周面摩擦力のみに起因しているため、図-4 に 示すせん断応力と同様、応力変化は杭近傍のみで発生 しており、地盤内の鉛直応力の増加量は小さい.一方、 拡底杭の場合は、拡底部における支圧抵抗が大きいた め、拡底部上部の鉛直応力が増加している.これによ り、大きな引抜き抵抗力を示したのだと考えられる.

5. まとめ

本研究では、3次元弾塑性有限要素解析により、遠心 力 50G 場における引抜き試験の再現解析を実施した. 本研究により得た知見は以下の通りである.

① 本研究で用いた解析手法により, 直杭と拡底杭の定

In-plane Shear Stress [kPa]

(a) Case-1: 直杭 (b) Case-3: 拡底杭 図-4 δ/D = 0.1におけるX-Z面のせん断応力分布

図-5 δ/D = 0.1におけるX-Z面の鉛直応力増加分布

性的な傾向を再現することが可能である. 今後は Joint 要素のパラメータなどを再考し,実験の再現 性を高める必要がある.

② 直杭の引抜き抵抗力は周面摩擦力のみに起因しているため、杭近傍のみで地盤の応力が変化する.一方、拡底杭では、拡底部における支圧抵抗が大きく作用し、拡底部上部の鉛直応力が増加する.その結果、直杭と比べて大きな引抜き抵抗力を示す.

【参考文献】

- Ye, B., Ye, G. L., Zhang, F. and Yashima, A. : Experiment and numerical simulation of repeated liquefaction-consolidation of sand, *Soils and Foundations*, Vol.47, No.3, pp.547-558, 2007.
- Nakai, T. and Hinokio, M. : A simple elastoplastic model for normally and over consolidated soils with unified material parameters, *Soils and Foundations*, Vol.44, No.2, pp.53-70, 2004.
- 澤村康生:盛土内に設置されたカルバートの耐震 性に関する基礎的研究,京都大学学位論文,2014