既製コンクリート杭の曲げ変形性能に関する研究 (その4 CPRC 杭の曲げせん断実験結果)

CPRC 杭	曲げせん断実験	正負交番載荷
軸力	曲げ耐力	変形性能

1. はじめに

本論文では、その3でのCPRC 杭曲げせん断実験における実験結果について報告する。表1に実験結果を示す。

2. 破壊状況

No.1~6 のいずれのケースにおいても,破壊に至るまで 軸力を保持していた。また,杭頭部が鋼製スタブに拘束 されていることにより,スタブ上端面から 50mm 程度以上 離れた箇所が最も大きく損傷する破壊状況であった。写 真 1 にNo.1 (II種, N=0kN),写真 2 にNo.3 (II種, N=3000kN),写真 3 にNo.4 (I種, N=3000kN)の破壊状況 を示す。No.3 は,No.1 と同一仕様で軸力 3000kN が作用し た場合で,軸力 0kN 時よりも破壊に至るまでのひび割れ 本数が少なく,軸力が作用していることでコンクリート の損傷範囲も大きい状況であった。破壊形式は,No.4 以外 すべて曲げ破壊であった。No.4 は,No.3 の杭体内鉄筋量 が少ない場合であるが,想定以上に曲げ耐力を有してい たことから,曲げ破壊前にせん断破壊した。写真 3 の通り, 試験体全長に斜めひび割れが発生した。

3. 最大および終局杭頭モーメント

表2に各実験ケースで得られた最大時および終局時の杭 頭モーメントと部材角を示す。また、図1にNo.1~No.6の 各実験ケースにおける杭頭モーメントー部材角を示す。 本論文では、終局時を杭頭モーメントが最大モーメント の後80%に低下した値(0.8Mmax)と定義し、最大モーメ ント(Mmax)を●、終局モーメントを▲で図1中に示し た。ただし、No.3~No.6のケースは、終局に至る前に破壊 したため図1な上びま2にけ記載していない

正会員	○長谷川	秀	同	船田	一彦

表1 実験結果一覧表

実 験 ケース No.	杭種	軸力比	設計値 Mu (kN・m)	計算値 Mu' (kN・m)	実験値 Mmax (kN・m)	比率 Mmax/Mu (kN・m)	比率 Mmax/Mu' (kN・m)	破壊 形式
1	П	0.00	224.5	247.6	264	1.18	1.07	曲げ
2	П	0.27	400.8	450.7	571	1.42	1.27	曲げ
3	П	0.40	403.2	503.9	584	1.45	1.16	曲げ
4	Ι	0.41	392.0	486.8	720	1.48	1.48	せん断
5	IV	0.26	442.9	510.6	549	1.24	1.08	曲げ
6	Π	0.40	403.2	505.3	600	1.49	1.19	曲げ

※No.6の設計値および計算値は、中詰めコンクリートを無視して算出した。

写真 1 No.1

写真 2 No.3

写真 3 No.4

			最大時		終局時				
実験 ^{ケース} No.	杭種	軸力比	計算値 Mu' (kN・m)	Mmax (kN•m)	Mmax時 部材角 R _{Mmax} (1/1000)	0.8Mmax (kN•m)	0.8Mmax時 部材角 R _{0.8Mmax} (1/1000)	比率 Mmax/Mu' (kN・m)	破壊 モード
1	П	0.00	247.6	264	14.6	212	30.5	1.07	曲げ
2	П	0.27	450.7	571	9.3	457	9.7	1.27	曲げ
3	П	0.40	503.9	584	8.8	-	-	1.16	曲げ
4	Ι	0.41	486.8	720	7.6	1	-	1.48	せん断
5	IV	0.26	510.6	549	11.4	I	-	1.08	曲げ
6	П	0.40	505.3	600	10.0	-	-	1.19	曲げ
※Nn6の計算値は、中詰めコンクリートを無視して算出した。									

Study on flexural deformation of precast concrete piles (Part4 : Experimental results of Bending Shear Test of COPITA Pretentioned and Reinforced Spun High Strength Concrete Piles)

図2は軸力の影響比較のためNo.1・No.2・No.3を、図3は 鉄筋量の影響比較のためNo.2・No.5 を、図 4 は中詰めコン クリートの影響比較のためNo.3・No.6 を重ねて図示した M-R 図である。なお、No.4 の破壊形式は、その他のケースと は異なりせん断破壊であったことから、No.3・No.4 の鉄筋 量の影響比較は今後追加実験を実施してから行うものと する。図 2 より, No.1 (N=0 kN) 最大モーメント時部材 角は 14.6/1000 rad で, その後大きく荷重は低下せずに 20/1000rad まで変形し, 終局モーメント時には 30/1000rad まで変形した。No.2・No.3 は, No.1 と同一仕様で軸力 2000kNおよび3000kNの高軸力とした試験体である。最大 モーメント時部材角は 9/1000 rad 程度で,最大モーメント 後は, No1 (N=0 kN 時) に比べて大きな変形性能を示す ことなく破壊に至った。No.2 では終局モーメント時までの 部材角を計測できたが、No.3 では終局モーメント前に破壊 に至った。軸力の違いにより変形性能が異なる結果であ り、軸力が高いほど、変形性能は小さくなる傾向であっ た。鉄筋量の影響について図3に示す。No.2最大モーメン ト時部材角が 9.3/1000 rad, No.5 最大モーメント時部材角が 11.4/1000 rad で、杭体内の鉄筋量の多い方が、部材角は大 きくなった。図 4 より, No.3 (中詰め無し) 最大モーメン ト時部材角が 8.8/1000 rad, No.6 (中詰め有り) 最大モーメ ント時部材角が 10.0/1000 rad で、くい中空部に中詰めコン クリートを打設することにより最大モーメント時の部材 角は大きくなったが、SC 杭ほど変形性能の向上効果は確 認できなかった。これは、外殻鋼管の有無によるコンク リート拘束効果に起因するものと考えられる。

4. 曲げモーメント-曲率 (M-φ) 関係

図5にNo.3(Ⅱ種, N=3000kN)の計算値および実験で 得られた M-φ図を示す。曲率算定位置は、スタブ上端よ り125mm(変位計測区間中心位置)である。実験値は変 位計から求めた曲率を示す。実験値と計算値(計算に用 いたコンクリート, PC 鋼棒および異形棒鋼の応力-ひずみ 曲線はその3記載)とを比較すると、計算値は変形をやや 大きく評価するが、おおむね精度よく評価していると考 えられる。

5. おわりに

本論文における CPRC 杭曲げせん断実験の結果,以下の 知見を得た。

①破壊に至るまで軸力を保持していた。

②軸力が高いほど、最大モーメント時および最大モーメント後の破壊に至るまでの変形性能が小さい傾向にある。
③杭中空部に中詰めコンクリートを打設しても、SC 杭ほど変形性能の向上効果はない。

謝辞をその6に示す。

一般社団法人コンクリートパイル建設技術協会 (COPITA)

