伊藤

小椋

淳志*3 仁志*4

節杭を用いたプレボーリング拡大根固め工法の根固め部に関する模型実験 (その7:根固め径が支持力に与える影響)

			止云貝	11/1	兵 '	민미
			同	永井	雅 * ²	同
埋込み杭	節杭	模型実験				
根固め部	支持力					

1.はじめに

同名論文(その6)の結果をもとに、本報では D シリ ーズ実験から得られる第2限界抵抗力を用いて、根固め 径の影響について検討する。

2.第2限界抵抗力による評価

表 - 1 に D シリーズの実験のうち、根固め径をパラメ ータとしたものを示す。ここで比較するのは、根固め径 De が 42.5、64、85mm の 3 種類である。杭は節杭であり、 根固め強度は 13.4~21.2 N/mm²、下方長さは 0mm である。

これらの実験種類について、図-1(a)に杭頭荷重 Po-杭頭沈下量根固め径比 So/De 関係の比較図を示す。これ は沈下量を根固め径で正規化したものであり、根固め部 も杭と見なした場合である。これは、杭本来の性能を表 していると考えられる。So=0.1De 時の荷重を第2限界抵 抗力 Pou(0.1De)とし、図中に で示す。

同図(b)に杭頭荷重 Po - 杭頭沈下量杭径比 So/Do 関係の 比較図を示す。ここでは、沈下量を杭径で正規化してい る。これは、根固め部には許容応力度を設定できないと いった法規上の制限から、根固め部を杭でないとして整 理した場合である。実際の工法開発の際には、図-1(a) ではなく図-1(b)の方法で支持力の評価が行われるのが 一般的である。So = 0.1Do 時の荷重を第2限界抵抗力 Pou(0.1Do)とし、図中に で示す。これは、設計上の極限 支持力となる。また、同図(a)で求めた も示す。これよ り、根固め径が大きい場合は設計上の極限支持力 Pou(0.1Do)()を上回る荷重が作用した場合でも、根固 め部が壊れなければ、Pou(0.1De) () まで支持力が増大 することが分かる。よって、根固め部を拡大掘削してい る工法は、現状の支持力評価方法においては杭本来の性 能を使いきっておらず、その実力に対して余裕のある設 計支持力を採用していることになる。

		78 -		列火 个里 犬只					
			根固め部						
実験	杭種	上載圧	径	上方 長さ ^{*1}	下方 長さ ^{*1}	圧縮 強度 ^{*2}	加圧後 相対密度		
		$p_v(kN/m^2)$	De(mm)	$L_{U}(mm)$	$L_L(mm)$	(N/mm^2)	Drc(%)		
D-3-1	節杭	600	64	100	0	21.2	88.0		
D-3-2	節杭	600	64	100	0	20.0	85.0		
D-4	節杭	600	85	100	0	13.4	84.8		
D-7	節杭	600	42.5	100	0	14.3	87.4		
*1杭先端からの長さ *2養生期間21~28日									

中的新新

なお、根固め部の破壊状況は、同図(c)に示す通りであ って、D-3-1、D-3-2 では割裂破壊が起こり、D-4 では下側 の節によるパンチング破壊と上側の節による割裂破壊が 同時に起こっていた。D-7 は根固め部の先端の角が欠けた 程度であった。

ΖШ

교수물

Model Tests on Enlarged Base of Pre-boring and Grouting Method with Nodular Pile (Part7. Influence of Enlarged Base Diameter upon Bearing Capacity)

ISHIKAWA Kazuma, NAGAI Masaru, ITO Atsushi and OGURA Hitoshi

3.支持力度による評価

次に、単位面積当たりの支持力によって、根固め径の 影響を検討する。前報¹⁾(同名論文(その5))でも同様な 検討を行っているが、地盤のばらつきが大きかったため、 上載圧と相対密度から推定した N 値を用いて補正してい た。しかし、ここで検討対象とする実験の相対密度は 84.8 ~ 88.0 % の範囲に収まっていること、上載圧 (600kN/m²)が推定式²⁾の適用範囲(50 p_v 300kN/m²) を外れていることから、推定 N 値は用いずに検討を行う。

図 - 2に So = 0.1De 時の荷重を杭断面積で評価し た支持力度 Pou(0.1De)/Ap と根固め径 De の関係を示す。 これを式 y=ax^b で近似すると b=1.63 となる。杭頭荷重 Pou が根固め部の先端面の抵抗 Ppu のみで発揮されており、 かつ Ppu がその底面積に比例(=根固め径の 2 乗に比例) するならば、b=2 となるはずである。しかし、ここでは Pou に根固め周面の摩擦力 Pfu(=根固め径に比例する)も 含めて検討しているために、b は 2 より小さくなっている。

 $y=ax^b$ の b を 2 と仮定し、式 $y=cx^2+dx$ に近似する ことで Ppu と Pfu を分離することを試みた。その結果、 $y=2.96x^2+108x$ が 得 ら れ 、 Ppu(0.1De)/Ap お よ び Pfu(0.1De)/Ap と De との関係は**図 - 2**のようになった。 Pou に占める Ppu の割合は、おおむね 50%から 70%の間 で変化している。

図-3に So = 0.1Do 時の荷重を杭断面積で評価し た支持力度 Pou(0.1Do)/Ap と根固め径 De の関係 (*y*=*126x^{1.16}*)を示す。周面摩擦力度は、載荷の初期にお いて最大値に達していると考えられるので Pfu(0.1Do)/Ap =Pfu(0.1De)/Ap とし、Pou(0.1Do)/Ap から Pfu(0.1Do)/Ap を 減じた値を Ppu(0.1Do)/Ap とした。これを式 *y*=*ax^b* で近似 すると b=1.3 となった。0.1Do ~ 0.1De 間の先端面支持力の 増大を無視することで、 で仮定した b=2 は 1.3 になった。

杭断面積で評価した支持力度 Ppu(0.1Do)/Ap を根固 め部底面積での評価 Ppu(0.1Do)/Ae に変えて、式 $y=ax^b$ で近似すると b= - 0.7 となった。径が異なる杭の同一 沈下量における先端面の支持力度は、地盤を一様 な半無限弾性体と仮定した即時沈下量の算定式 ($S_E=((1 - s^2)I_SqB)/E_s$:建築基礎構造設計指針³⁾)より、 杭径に反比例する(b= - 1)ことが指摘されている⁴⁾。本 実験でも、これを示唆する結果となった。

4.おわりに

根固め径が支持力に与える影響について検討した結果、 根固め部を拡大掘削している工法は、実際の極限支持力 に対して余裕のある設計支持力を採用していることが確 認できた。また、根固め部の先端面支持力と周面摩擦力

- *² 関西大学大学院
- *3 関西大学 准教授・工博
- *⁴ ジャパンパイル(株)・工博

を分離し、その比率や先端面の支持力度についても検討 した。今後は、地盤のN値も含めた検討を行いたい。

謝辞

本実験を行うに当たり多大な協力をいただいた関西大 学学部卒業生の當内佑季氏、中山暁絵氏に謝意を表する。

【参考文献】

1) 石川一真,永井雅,伊藤淳志,小椋仁志:節杭を用いた プレボーリング拡大根固め工法の根固め部に関する模型実 験(その5),日本建築学会大会講演梗概集,pp.425-426,2009.8 2)濱田晃之:砂地盤における動的貫入試験に関する実験的 研究,関西大学大学院修士論文,平成元.3 3)日本建築学会:建築基礎構造設計指針,pp.123-124,2001

4) 杉村義広:建築杭基礎維考,総合土木研究所,pp.51-56,2009

JAPAN PILE CORPORATION Graduate School, Kansai Univ. Assoc. Prof., Kansai Univ., Dr. Eng. JAPAN PILE CORPORATION, Dr. Eng.