水平力を受ける鉄筋コンクリート造基礎杭の耐力と変形性能

場所打ち杭 せん断 杭の水平抵抗

ヨーコン株式会社	正会員	西本憲正
大同工業大学	非会員	山本俊彦
愛知工業大学	非会員	山田和夫
ヨーコン株式会社	非会員	岡田 亨

1.はじめに

場所打ち鉄筋コンクリート造基礎杭の構造特性を把握することを目的として、現行の場所打ち鉄筋コンクリート造基礎杭における せん断補強筋量を考慮しせん断補強筋比を 0.3%以下の範囲における実験を行ってきた ¹⁾。ここでは、その後筆者らが行った実験等に 基づいて、水平力を受ける場所打ち鉄筋コンクリート造基礎杭の構造特性について報告する。

2. 実験概要

実験は杭断面 =300 mmの試験体 15 体を用いて行った。試験体は曲げとせん断が卓越する杭頭部を対 象とした。縮尺率は実大杭の約1/4である。

2.1 試験体

図-1 に試験体(せん断スパン比2.0)、表-3 に試験体一覧を示す。試験体は、杭断面 =300 mm、せ ん断スパン比(M/QD)が1.5および2.0の2種類の上下スタブ付きの鉄筋コンクリート杭試験体を製作 した。実験要因は、M/QD、杭部のせん断補強筋比(pw)、せん断補強筋強度および軸力(N)とした。M/QD は実在の場所打ちコンクリート杭のモーメント分布状況を考慮してせん断の卓越する 1.5、2.0 に設定し た。pwは現行の場所打ち鉄筋コンクリート杭のせん断補強筋の範囲から 0.00%、0.10%、0.20%とし、比 較のため 0.30%を加えた。また、施工上の制約から補強筋量の限界があることから、高強度せん断補強 筋を用いた試験体も加えた。杭部の主筋は 12-D16(=300 mm:pg=3.37%、SD390、かぶり厚 30 mm)とした。 軸力は拡底杭の場合での最大軸力、および軸力の変動を受けることを考慮し N=0、7.5MPa、15MPa および 地震時での軸力の変動(-2.5MPa~15MPa)の4種類とした。

セメント

(kg/m³)

292

水

(kg/m³)

178

図-1 試験体(M/QD=2.0)

弹性係数

(GPa)

21.3~23.5

2.2 使用材料

表-1、表-2 に使用材料を示す。 横補強には	W/C		
4mmのスパイラル筋を用いた。			
	61.2		

2.3 実験方法

加力はアクチュエータージャッキにより変形角 R=1/400 で正負各1回、変 形角 R=1/200、1/100、1/50 で正負各 2回、変形角 R=1/25 で正負各 1回そし て変形角 R=1/20 まで加力することを原則とした。ひずみゲージは、主筋4本 の5 断面(試験スパン3 断面、150 mm間隔、2 断面は剛な基礎梁内で150 mm間 隔) せん断補強筋は2断面(基礎梁との境界から150mm、300mm)に貼り付けた。

(MPa)	(MPa)			
2.14~2.36	26.1~29.5			

引張強度

D:異形

表-1 コンクリート特性

スランプ

(mm)

180

	衣-2	伸迫の 機械的 生育	Į.		
用途	形状	降伏点(MPa)	引張強度(MPa)		
軸方向	D16	415~449	585~667		
雄七百	4	494 ~ 502	562~624		
假刀凹	4	1420	1730		

: 丸鋼

圧縮強度

:高強度

3.実験結果

表-3に実験結果一覧表を示す。

曲げ降伏(Qmy)に達する前に破壊したも のを S: せん断破壊、曲げ降伏後、曲げ 終局耐力(Qmu)に達する間にせん断破壊し たものを F1.S:曲げ降伏後せん断破壊、 終局曲げ強度に達したものを F2:終局曲 げ強度後曲げまたはせん断破壊下と定義 した。曲げ耐力は計算値に基づいている。

3 . 1 ひび割れ状況

せん断スパン比1.5の試験体では、軸力 がない No.2 に比べ、軸力のある No.4 は多 くのひび割れが発生した。せん断スパン比2.0の試験(

	せん断 構補 が ン比 M/QD (%)	軸力	最	、耐力	限界		計算値比			
試驗休		強筋		eQ	e	变形。	破壊	曲げ せん		せん新
11/05/14		pw (%)	N (MPa)	(KN)	× 10⁻³ (rad)	× 10 ⁻³ (rad)	t-r	eQ/cQmy	eQ/cQmu	eQ/cQsu
No.1	1.50	0.095	7.5	200	4.98	-	S	0.82	0.71	1.16
No.2	"	0.189	0	172	10.5	-	F1,S	1.06	0.75	1.13
No.3	"	"	11	180	10.0	17.0	F1,S	1.05	0.76	1.25
No.4	"	"	7.5	256	10.2	11.8	F1,S	1.08	0.92	1.33
No.5	"	"	"	234	8.38	20.0	F1,S	0.96	0.83	1.26
No.6	2.00	0	0	114	8.73	9.86	S	0.93	0.67	1.40
No.7	"	0.095	0	119	7.85	8.68	S	0.98	0.70	1.04
No.8	"	"	7.5	188	10.1	11.4	F1,S	1.06	0.90	1.22
No.9	"	"	"	196	10.0	20.0	F1,S	1.07	0.92	1.15
No.10	"	"	15	225	9.35	10.0	F2	1.07	1.04	1.15
No.11	"	"	-2.5,15	192	10.1	14.5	F1,S	0.94	0.92	1.29
No.12	"	0.189	0	153	16.1	17.7	F1,S	1.25	0.89	1.20
No.13	"	"	7.5	205	14.3	20.4	F1,S	1.16	0.98	1.22
No.14	"	0.287	0	194	40.2	40.2	F2	1.52	1.09	1.46
No.15	"	"	7.5	245	20.1	31.5	F2	1.34	1.16	1.41
)の詳確体でけ、軸力-0に比べ、軸力が7.5MPaでは、7.17[割わ太数が増え、全体に分										

表-3 実験結果

Horizontal Force operate Rainforced Concrete Pile Foundation of Proof Stress and Deformational Characteristics

Norimasa Nishimoto(Yocon Co, Ltd.), Toshihiko Yamamoto(Daido Institute of Technology), Kazuo Yamada(Aichi Institute of Technology), Akira Okada(Yocon Co., Ltd.)

散している。しかし、軸力が 15MPa と大きくなると逆にひび割れは減少する。せん断補強筋比については N=0 の場合、せん断補強筋 比が 0.095%と比較して 0.189%の場合、ひび割れ数は増大した。しかし、軸力=7.5MPa の場合は、逆にせん断補強筋比が大きいとひび 割れ数が減少した。せん断耐力は等価な矩形断面に置換した荒川式による計算値をいずれも上回った。

<u>3.2 荷重・変位関係(正方向包絡線)</u>

図-2 にせん断補強筋の量が異なる3体の試験体の荷重-変位関係を示す。せん断補強筋の無いNo.6 は、せん断ひび割れの発生直後 にせん断破壊した。せん断補強筋比が0.095%(pw-w y=0.47MPa)配筋されているNo.7 も最大耐力は同程度で、最大耐力に達した後急 激に耐力低下を示した。しかし、せん断補強筋比0.189%のNo.12 はせん断補強筋量の違いにより変計量の差が現れ、最大耐力時約2 倍の変形を示した。

図-3 にせん断補強筋比が0.095%で軸力が異なる3体の試験体の荷重-変位関係を示す。図-4 はせん断補強筋比0.189%と軸力7.5MPa が同じでシアスパン比の異なる2体の試験体から求めたデータの最大せん断耐力を1としたものを示す。No.4 が最大せん断耐力に達してからすぐに破壊しているのに対し、No.13 は最大耐力後も変形角1/50 までは安定した耐力を示した。

図-2 せん断補強筋比とせん断耐力 3.3 せん断補強量とせん断耐力

図-5 にせん断補強量とせん断耐力の関係を示す。現行の場所打ち鉄筋コンク リート造杭では、通常せん断補強量は 0.2%以下である。せん断補強量 pw-w y =1.0MPa 以下となる。せん断補強量が 0.5MPa 以上でせん断耐力の上昇が見られ る。また、高強度せん断補強筋の効果も見られる。

3.4 限界変形

限界変形(1)を最大耐力の80%時点として変形能を評価すると、シアスパン 比2.0 でせん断補強筋比0.189%では1/50、それ以外は1/100前後となった。軸 力の違いによる限界変形性能に大きな差は見られなかった。

4.計算値との比較

曲げ終局強度に達したのはせん断補強筋比 0.29%の試験体である。No.10 試験

体は、軸方向主筋のひずみから曲げ終局郷土には達しなかったと考えられる。せん断耐力は、軸方向力によって計算値と大きな違い が見られた。また、補強筋が無い場合にやや高めの値を示した。ばらつきは大きいが、平均値1.25となった。

<u>5 . まとめ</u>

本研究の結果を要約すると、およそ以下のようにまとめられる。

1) せん断耐力は荒川式による計算値に対しいずれも上回り平均1.25 となった。せん断補強筋のない試験体は、せん断ひび割れ発生 直後にせん断破壊したのに対し、せん断補強筋の配筋されている試験体では、せん断ひび割れ発生後に急激な剛性低下が認められた が、補強量の増大に伴い破壊に至るまでの挙動は安定した。

2) 軸力が大きくなるほど、最大せん断耐力が大幅に大きくなった。せん断耐力の評価には軸力の影響を考慮する必要がある。

3)最外端の主筋が降伏していることから、限界変形(1)を最大耐力の80%時点として変形能を評価すると、せん断スパン比2.0で せん断補強筋比0.189%では1/50、それ以外は1/100前後となった。軸力の違いによる限界変形性能に大きな差は見られなかった。

4)実験値の曲げ降伏耐力比と終局曲げ耐力比の検討から、限界変形 1/100rad を確保するには降伏曲げ耐力以上、また同 3/100rad 以上確保するには終局曲げ耐力以上のせん断補強が必要であった。

参考文献

1)山本俊彦・山田和夫・勅使河原正臣:場所打ち鉄筋コンクリート杭の杭体及び接合部の耐力評価に関する実験的研究(その5 変 形および耐力の検討)、日本建築学会大会学術梗概集(九州)、pp.719-720、1998.9

2) 酒向靖二・山田和夫・山本俊彦:場所打ち鉄筋コンクリート杭のせん断挙動に関する基礎的研究、コンクリート工学年次論文報告集、Vol.21、No.3、pp.493-498、1999.

