小径杭の動的水平載荷試験結果に基づく大径杭の水平荷重 - 変位関係の予測の試み

| 正会員 | 小嶋     | 英治*              |
|-----|--------|------------------|
| 正会員 | 松本     | 樹典**             |
| 正会員 | Kitiyo | dom Pastsakorn** |

| 杭  | 水平載荷      | 動的 |
|----|-----------|----|
| 静的 | 荷重 - 変位関係 | 事例 |

## 1. はじめに

杭基礎の設計においては、大変形に至るまでの、単杭 の水平荷重 - 変位関係を把握することが必要である。し かし、費用、工期、および本杭自体の損傷を考慮すると、 本杭を用いて、大変形までの水平載荷試験を行うことは、 実務上難しい。

そこで,著者らは,同一地盤で小径の捨杭と大径の本 杭を互いに反力杭とし,同時に2本の杭の載荷試験を行 う試験方法を開発している。この方法よって,小径杭で は,大変形に達するまでの水平載荷試験を行うことがで きる。ただし,本杭では,弾性範囲内の試験に留めるこ ととする。小径杭の試験結果から解析的に大径杭の大変 形に至るまでの挙動予測を行うことを試みている。

本研究では,杭径と長さが異なる2本の鋼管杭の動的 および静的水平載荷試験を,それぞれ独立に行った。ま ず,小径杭の動的水平載荷試験を行い,その結果に基づ いて大径杭の動的および静的挙動の予測を試みた。予測 の妥当性を検討・考察するため,実際に大径杭の動的お よび静的水平載荷試験を実施し,予測結果と比較した。

#### 2.試験地盤と試験杭

試験は,埼玉県川越市において実施した。図1は,試 験地盤の柱状図とN値の深度分布である。深度5mから 7mにN値が大きな細砂層が存在するが,深度14mまで は,粘土が主体的な地盤である。この地盤に2本の先端 閉塞鋼管杭(P1杭とP2杭)を,プレボーリング埋込み 工法で打設した。表1に試験杭の諸元を示す。P2杭の杭 径は500mmであり,P1杭の杭径は600mmである。以 後,本稿では,P2杭を小径杭,P1杭を大径杭と称する。

| K -                                               |                                    |                                    |  |
|---------------------------------------------------|------------------------------------|------------------------------------|--|
|                                                   | P1 pile                            | P2 pile                            |  |
|                                                   | (大径杭)                              | (小径杭)                              |  |
| 長さ (m)                                            | 6.5                                | 10.0                               |  |
| 根入れ長さ (m)                                         | 5.4                                | 8.9                                |  |
| 外径 (mm)                                           | 600                                | 500                                |  |
| 板厚 (mm)                                           | 9                                  | 9                                  |  |
| ヤング率 (kPa)                                        | $2.06 \times 10^{8}$               | $2.06 \times 10^{8}$               |  |
| 密度 (ton/m <sup>3</sup> )                          | 7.8                                | 7.8                                |  |
| 板厚 (mm)<br>ヤング率 (kPa)<br>密度 (ton/m <sup>3</sup> ) | 9<br>2.06 × 10 <sup>8</sup><br>7.8 | 9<br>2.06 × 10 <sup>8</sup><br>7.8 |  |

表1 試験杭の諸元

Attempt to predict the load-displacement relationship of the pile in a large diameter based on the dynamic load tests in a lateral direction of another pile in a small diameter





#### 3.試験装置,試験方法および試験手順

動的水平載荷試験では,質量 0.96 ton の鉄製ハンマー を杭頭から 250 mm の位置に衝突させて,動的載荷を行 った。ロードセルで水平載荷荷重を,変位計によって載 荷位置の水平変位を,圧電型加速度計によって加速度を, 15 μs 間隔で測定した。

P1 杭および P2 杭とも,最初に動的載荷試験を実施し, その後,段階載荷方式および連続載荷方式の静的載荷試 験を行った。

## 4. 水平試験結果と予測結果

#### 4.1 小径杭の試験結果

図 2 に,小径杭の動的載荷試験結果とマッチング計算 結果を示す。水平載荷継続時間は,約55msとなった。こ の測定水平荷重を入力条件として,参考文献1)に示した プログラムを用いてマッチング解析を行った。図2(b)に, 測定および計算水平変位を示す。計算による水平変位は, 立ち上がり部分および最大変位量は,測定値とよく一致 した。表2は,マッチング解析で用いた地盤パラメータ である。解析によれば,深さ1m以深では,弾性範囲内 に留まった。表2の地盤パラメータを用いて,静的な水 平荷重-変位関係を計算し,それを連続載荷静的載荷試 験と比較した(図3)。計算結果は,載荷段階の実測結果 とよく一致した。

Kojima Eiji, Matsumoto Tatsunori, Kitiyodom Pastsakorn





| 表 2 | マッチング解析で用いた地盤パラメータ |
|-----|--------------------|
|-----|--------------------|

| 深さ    | せん断剛性   | ポアソン比 | 最大水平              |  |  |
|-------|---------|-------|-------------------|--|--|
| (m)   | G (kPa) |       | 地盤抵抗              |  |  |
|       |         |       | $q_{\rm h}$ (kPa) |  |  |
| 0 ~ 1 | 1539    | 0.3   | 5                 |  |  |
| 1~    | 1539    | 0.3   | 弾性範囲              |  |  |
|       |         |       |                   |  |  |



## 4.2 大径杭の予測結果と実測結果

小径杭の動的水平載荷試験から求めた地盤パラメータ を,そのまま大径杭に適用し,その挙動を予測した。動 的挙動の予測に当たっては,図4(a)に示す測定水平載荷 荷重を用いて,波動解析を行った。図4(b)に示すように, 動的載荷試験における水平変位の予測結果は,実測結果 とよく対応した。

図 5 は,静的連続載荷試験の予測および実測結果の比 較である。予測結果は,実測の水平変位を多少安全側に 評価している。



### 5. おわりに

著者らが現在開発している,同一地盤で小径の捨杭と 大径の本杭を互いに反力杭とし,同時に2本の杭の載荷 試験を行う方法とその実大杭への適用結果を報告した。 ただし,動的水平載荷試験の波動解析においては,除荷 時の地盤ばね特性に,実測から得られた特性を表現でき るモデルを導入する必要性がある。今後,事例を増やす ことで,試験方法の精度向上および試験方法の確立を目 指す予定である。

# 参考文献

- 1) 松本樹典, Kitiyodom P., 小嶋英治(2005): 鉛直および 水平方向の動的・静的杭載荷試験解析プログラムの開発, 2005 年度日本建築学会大会学術講演梗概集.
- 小嶋英治,熊谷裕道,松本樹典,Kitiyodom P. (2005): 杭の動的水平載荷試験システムの開発(その1),第 60回土木学会年次学術講演会.
- 3) 熊谷裕道,小嶋英治,松本樹典,Kitiyodom P. (2005): 杭の動的水平載荷試験システムの開発(その2),同上.

\* ジャパンパイル(株)

<sup>\*</sup> Japan Pile Corporation

<sup>\*\*</sup> Kanazawa University

<sup>\*\*</sup>金沢大学