鋼管杭の繰返し水平載荷試験のシミュレーション解析

鋼管杭.	水平載荷試驗.	変形解析
		\mathcal{I}

金沢大学	学生会員	深江亮士	国際会員	松本樹典
寒地土木研究所	国際会員	冨澤幸一		
ジャパンパイル	正会員	小嶋英治	正会員	熊谷裕道

1. はじめに

2008 年 11 月に一般国道 36 号の道路橋の基礎鋼管杭工 事において,基礎鋼管杭の動的水平載荷試験¹⁾と静的繰返 し水平載荷試験が実施された。後者の試験の主目的は,試 験杭の水平変位uが杭径Dの 1%となったときの水平地盤 反力係数khを求め,橋台の設計khを確認することであった。 さらに,今後の設計用資料として, u=0.04D時のkhを求め ることを目的とした。

本稿では、有限差分解析(FLAC3D)によって静的繰返 し水平載荷試験のシミュレーション解析を行い、繰返し載 荷が杭の挙動に及ぼす影響も検討した。

2. 静的繰返し水平載荷試験の概要

図1は、試験地盤の土質柱状図と N 値の深度分布である。試験地盤は火山灰が主体的である。試験現場では、地盤を深さ 7m まで掘削し、そこを試験地盤表面とした。N 値は、ほぼ深さとともに増加している。

試験杭は、中堀り工法(セメントミルク噴出攪拌方式に よる先端処理)で施工された開端鋼管杭(表1)である。 杭先端は、試験地盤表面から22.05 mの深さである(突出 長さ0.95 m)。杭の10 断面において、ひずみゲージを載 荷方向の対称位置の外周面に貼付け、軸ひずみを測定した。 軸ひずみから曲げモーメントを求めた。ひずみゲージの保 護のため、載荷方向の対称位置の外周面の軸方向に沿って 溝型鋼を溶接した(杭頭から0.85 から11.2 mの区間)。

Simulation analysis of static cyclic horizontal load test of a steel pipe pile

ā	長1 訴	弌験杭の諸元	
		Upper	Lower
		section	section

	section	section
Length (m)	5.0	18.0
Outer diameter (mm)	600	600
Wall thickness (mm)	11	9
Young's modulus (kPa)	2.06×10^8	
Poisson's ratio	0.3	
Density (t/m^3)	7.8	

杭の水平載荷試験は、4 サイクルの片振り載荷(各サイク ルのピーク水平荷重は152,254,323,437 kN)とした。なお、 載荷点は、試験地盤表面から0.3 mの高さの位置である。

3. 静的水平載荷試験の解析

解析には、有限差分解析プログラムFLAC3D²⁾を用いた。 図2は、鋼管杭と地盤のモデルである。地盤側面の水平変位、 地盤底面の鉛直変位および対称面のy方向変位を固定した。 鋼管杭の内・外周面および先端にはインターフェース要素を 配置した。鋼管杭は中堀り工法で施工されたが、施工後に土 砂を鋼管杭内部に投入した。そのため、杭内部にも地盤要素 を設置した。

杭のモデル化に際して、保護材(溝型鋼)を直接にはモデル化していない。ただし、保護材を含めた載荷方向の曲 げ剛性EIと一致するように、各杭区間のヤング率として表 2に示す等価ヤング率 E_{eq} の値を用いた。地盤は、モール・ クーロンの弾・完全塑性モデルとした。今回の解析では、 粘着力c'=0と仮定し、せん断剛性Gについては、参考文 献 1)を参照し、表3に示す値を仮定した。

解析手順としては、まず自重解析を行い、それを初期状 態とし、その後荷重制御による水平載荷解析を行った。

Ryoji Fukae, Kanazawa University Tatsunori Matsumoto, Kanazawa University Koichi Tomisawa, Civil Eng. Research Inst. for Cold Region Eiji Kojima and Hiromichi Kumagai, JAPANPILE Corp.

表2 解析における試験杭のパラメータ

Sec.	Dist. from	$I(m^4)$	$E_{\rm eq}$ (kPa)
no.	pile top (m)		
1	0 to 0.85	0.883×10^{-3}	$2.06 imes 10^8$
2	0.85 to 5.00	1.144×10^{-3}	$2.67 imes 10^8$
3	5.00 to 11.20	0.993×10^{-3}	$2.80 imes10^8$
4	11.20 to 23.00	0.730×10^{-3}	2.06×10^{8}

Layer	Ave.	Depth from	G (MPa)	Total density,
no.	N	G. L. (m)		$\rho_{\rm t} ({\rm t/m^3})$
1		0.0 to 5.2	10.0	1.4
2		5.2 to 10.4	15.0	1.4
3		10.4 to 13.4	21.2	1.5
4		13.4 to 16.7	16.1	1.5
5		16.7 to 30.0	44.0	1.9

表3 地盤パラメータ

図3は、 $\phi' = 30, 35, 40$ deg. とした場合の単調水平載荷 解析結果(載荷点における水平荷重-水平変位関係)を繰 返し載荷試験結果と比較したものである。 ϕ' が大きくな るにつれて、解析結果は実測結果に近づいてはいるが、 ϕ' = 40 deg. の場合でも、解析結果は水平変位を過大評価し ている。これは、今回の解析では粘着力 c'を0と仮定して いることに起因しているものと考えられる。

試験地盤面位置の杭変位が 6 mmにおける逆算 k_h は, 40997 kN/m³であり, 設計値 $k_h = 26381$ kN/m³を上回った。

図4は、 ϕ' =40 deg. とした繰返し載荷解析結果である。 繰返し載荷による水平荷重-水平変位曲線の包連線は、ほ ぼ単調載荷解析結果に一致した。興味深いことは、載荷初 期における水平杭頭剛性(荷重増分/変位増分)が初期載 荷におけるそれに比べて低下することである。この原因は、 杭と地盤の間のギャップ発生にあるといえる。図5は、水 平荷重 H = 323 kN 載荷時(3 サイクル目のピーク荷重時) および完全除荷(H = 0)時における杭、および杭外周に隣接 する地盤の水平変位分布の解析を示したものである。H =323 kN 載荷時には、杭背面(left)のみにギャップが生じ ている。完全除荷時には杭前面(right)と杭背面(left) にギャップが生じている。このギャップの発生によって、 再載荷初期の水平杭頭剛性が低下する結果となり得る。

図6は、繰返し解析による杭の曲げモーメントの計算結 果と実測結果である。解析の方が、深いところまで曲げモ ーメントが発生している。これも、地盤の強度定数の設定 (c'=0を仮定)によるものであろう。

4. おわりに

今後,地盤の強度定数を実験によって決定し,さらに解 析的検討を進める予定である。両振り載荷の影響,また繰 返し水平載荷が杭の鉛直挙動に及ぼす影響についても検 討する予定である。

参考文献

- 1) 熊谷裕道,小嶋英治,冨澤幸一,松本樹典 (2009):鋼管杭の 動的水平載荷試験法 (その4-実杭の試験検証その3),第 44回地盤工学研究発表会(投稿済).
- 2) Itasca (2002): *FLAC3D* Optional features, Itasca Consulting Group, USA.