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SYNOPSIS

Model pile tests have been performed in a medium dense dry sand under static compression and one-
way cyclic compression loading modes in a pressurized chamber. This paper mainly examines two
main parameters affecting the pile behaviour under cyclic loading : pile surface roughness (rough and
smooth) and pile installation method (displacement by jacking and buried). Soil strength parameters

testing in the deposit by CPT en DMT is also briefly discussed.

INTRODUCTION
. . 20
An experimental study of the load-settlement behaviour of
a model pile in sand, in a calibration chamber {CC), and =
subjected to static and dynamic loading was performed at E 15
Ghent University by the main author. The goal was to clari- ";
fy, at least qualitatively, the fundamental mechanism of —
cyclic pile-soil interaction behaviour, focussing on the pile g 10
shaft friction mobilisation. Major previous suggestions, Ina g
(1992) - fig. 1 a,b,c, were mainly related to cohesive soils. 8
The tests described have refer to pure dry quartz sands. % 0.5
a
o]
Tests with no failure for N > 10,000

Test with failure at N = 564 } McAnoy et al(1982)

Tests of Puesch(1882) - no failure
Stevens(1978) - no settiemnent
Stevens(1978) - continuing settlement

F Stevens(13978) - plunging failure
F Poulos(1981) - model tests, failure after 3-180 cycles
F Karlsrud et al.§1986) - failure after 100 cycles
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EQUIPMENT AND TEST PROCEDURE

Fig. 2 shows the setup of the pile loading test. CPT tests
are also carried out on identical sand specimens in the CC.
Each sand specimen has a 1,4 m effective diameter instru-
mented ring system and 2.1 m effective height. The ring
system was removed in the lateron tests, because of hand-
ling difficulties.

The specimen is vertically loaded by 4 oil jacks on the rigid
top plate. This overburden pressure is kept constant
throughout the test. The model pile or penetrometer is
jacked by means of a loading frame mounted on a reaction
beam.
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Fig. 2 Pile loading tests setup

The steel top plate has 5 holes : one at centre for pile loa-
ding test or cone penetration test. There are also 4 side
holes located as shown in this figure. Dilatometer tests
and some cone penetration tests were performed out of
the centre.

The sand specimens were prepared by a carefull layered
tamping method using the undercompaction principle. An
amount of sand, equivalent to 0.11 to 0.12 m of the
heightfor each layer, is discharged as evenly as possible
through a flexible tube. The tube has a set of perforated
plates in its tip so that the sand drops on a previous layer
in Joose condition irrespectively of the drop height. After
flattening smoothly the surface of the layer, it is tamped in
a severely standardised way and procedure by a rod of 9
kg and diameter 0,30 m. The achieved relative density of
the overall sample becomes about 65 % and is very repro-
ducible.

In order to identify the initial state of the specimen, pene-
tration tests, CPT ; DMT ; and LSCT, were conducted in
the chamber. The results also provide information of the
representative strength and deformation properties of the
specimen. The test conditions are assembled in table 1. No
notable influence on the results of different location, diffe-
rent side boundary, different rate and loading history was
observed.

Table 1 : Summary of the penetration tests

T 1D ien | Soumiary | ™
No. - Remarks
(%) | centre | side |Nexible] rigid | (mm/s)
cPT) |67] O O} © | 12
CPT2 |67 O } O} O 16 .
CPT3 (59} O (0] 20 {afier DMT 2
CPT 4 |67 e} o} 20 |jafier SD 2 pile test
CPT5 |65 o e} 20 {afier SD 3 pile test
CPT 6 |65 (0] e} 20 Jafier SD 4 pile test
CPT 7 |66 o) (0] 20 |afier SD 5 pile test
‘CPT 8 |68 [¢] o 20 {afier SND 2 pile test
CPT 9 |69 (@] (¢] 20 [afier RND 7 pile test
DMT 1|65 o} O 15
DMT 2 |59 (o] o] 20 |tangential orientziion
DMT 3|64 (0] e} 20
DMT 4 | 65 e} ) 20 |with RD pile instzllation
DMT 5| 68 (o] e} 20 [with SND 3 pile test
LSCTi{n{ © (o] 26
LSCT 2{70{ O (o] 23 |25 cra pre-penetration
LSCT 3|68 | O e} 20 |5 cm pre-penetration
D, : rclative density v,  penetration rate

Some cone penetration test results are shown in fig. 3.
The cone resistance q, is quickly developed and reaches
some plateau in between 0.4-1.6 m of depth. Those con-
stant q, values correspond very well to the indicated relati-
ve density, and ranges between 11-14 MPa. The local skin
friction f, value also corresponds to the expected values
but tends to increase slightly with depth.
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Fig. 3 CPT results



Locol side friction, f; (kPo) . The peak TXC-shear angle of the sand at the test condition
[¢] 50 100 150 200 was p = 39° and the maximum shear modulus at very
; " - low strain G,,,, = 80 MPa.

E 0.4 Regarding the initial state of the specimen, the uniformity
~ o6 of the specimen can be considered as good both in vertical
S . and lateral direction. However, the stiffness of the speci-
Q. 08} locotion in C.: side is li ightly i i i
B, ol boundoryof C. : rigid men is likely to slightly increase with depth. The derived
& - 0—0 CPT 4 (Dr=67 %) lateral stress coefficient at rest K, implies that the speci-
-é V28 s—0» CPT 5 (Dr=65 %) men is apparently only in a lightly overconsolidated conditi-
3 5 S gg?gg:gg zg on, perhaps due to sand tamping in the rigid boundary
S 16} ©—v CPTB (Dr=68 %) calibration chamber. Based on many correlations in literatu- -
1.8 L T CPT 3 (Dr=69 %) re between penetration test results and soil properties, the
20 original strength and deformation properties of the speci-
men could easily be evaluated for this pure sand, fig. 5.
Fig. 3 CPT results
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.The model test pile, table 2, carried five load cells at equal
interdistance, from top to top. The diameter ratio of cham-
ber to pile became about 40. For the "smooth" pile (S}, the
stainless steel was left bare ; for the "rough” (R) pile, the
shaft was coated with coarse sand.

Table 2 : Model pile properties

Material Stainless steel

Effective length at

initial : 1 {mm) 1470
Diameter : d {(mm)
smooth pile 35.7
rough pile 40.0
Thickness : t {mm)
rog segment 10.0
load cell 5.0
Roughness : R,,,, (um)
smooth pile 7-10
rough pile (glued quartz sand)

Regarding the test pile installation and testing procedure
three parameters were considered : pile shaft surface
roughness (S or R), pile installation method (displacement

(D) or buried (ND), fig. 6) and the cyclic load level Q"‘”‘,

i
(fig. 7).
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(1) initial deposit
(2) pressurizing (0", = J00 kPa) and stabilizing
(3) pile installation
(4) stabilizing
(5) pile Joading :
- initial static Joading (Ist day)
- cyclic Joding (2nd day)
- final static loading Gmmediately afier cyclic Joading)

(b) Non-displacement pile (burricd pilc) o
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(1) sand bed
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(3) initial deposit with pile
(4) pressurizing (6., = 100 kPa) and stabilizing
(5) pile Joading :
- initial static Joading (st day)
- eyclic loding (2nd day)
- final stalic Joading (immediatelyafter cyclic loading)

Fig. 6 Test procedure
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Fig. 7b Test manncr and definitions

All loading tests were performed in a load-controled mode.
The cyclic loading wave period was set to 6 sec. The
summary of the performed pile loading test parameters is

given in table 3. .
For the interpretation of the test results, the residual loc-

ked stresses due to pile installation, especially in the case
of displacement piles, were measured before each loading
test. Such residual stresses at the pile tip varied typically
around 20 kPa for SD, 10 kPa for RD and about 5 kPa for
SND piles.



Table 3 :Summary of pile loading test parameters

50 T T g

40

30

20

Pile head load, Q (kN)

#,
7
i
A
RD Piles (lnitiol)
S ©——0 RD 1 4
A~——s RD 2
A-~—a RD3
D—D RD 4
10 . U — RD 5 -
y—v RD &
6——o RD 7 @

Test D, Cyclic Loading
NO. {%)

Lo Qo | Qo | Qo

Qur Quy Qup Quve
RD 1 66 0.40 0.17 0.57 0.43
RD 2 66 0.41 0.22 0.60 0.53
RD 3 67 0.40 0.35 0.76 0.88
RD 4 64 0.40 0.31 0.71 0.77
RO S5 64 0.40 0.40 0.80 0.98
RD 6 62 0.42 0.34 0.76 0.82
RD 7 64 0.40 0.42 0.81 1.05
sb1 66 0.41 0.31 0.72 0.75
sD 2 67 0.37 0.34 0.72 0.92
sD 3 65 0.37 0.38 0.75 1.04
SD 4 65 0.38 0.27 0.65 0.70
sD§ 66 0.40 0.28 0.68 0.69
SD 6 66 0.42 0.20 0.62 0.48
RND 1 69 0.38 0.40 0.79 1.02
RND 2 68 0.41 0.35 0.76 0.84
RND 3 68 - - - -
SND 2 68 0.37 0.32 0.69 0.87
SND 2 68 0.33 0.40 0.73 1.20
SND 3 68 0.46 0.44 0.89 0.95

TEST RESULTS OF STATIC MODEL PILE LOADING

The static loading test results are gathered in fig. 8 and 9
for the rough and smooth model piles respectively, and
summarised in table 4.

Table 4 : summary of static pile load tests in CC.
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RD | 65| 11 {11.3]12.2 | 12.4 | 156 135
Sp [66] 12 | 9.9 { 10.6 | 11.4 61 65
RND | 68113.5| 3.1 | 4.6 7.3 106 92
SND | 68]13.5] 2.5 | 3.6 5.6 32 31

The unit toe resistance q, at s/d = 10 %, 30 % and 100
% are not surprisingsly very much in accordance with the
relevant q, values. On the other hand, the g, value for non-
displacement (buried) pile still heavily depends on the
settlement level even after the conventional s/d = 30 % -
value. These observations coincide with many experimen-
tal test results both in model and prototype piles.

Fig. 8a Load settlement - rough, displacement (RD) pile

The rough piles show a peak value for the unit shaft resis-
tance at about 10 % of the relative settlement, whereas it
is not clear at all for the smooth piles, due to interface slip.

Intuitively, the observed pile shaft behaviour is similar to
the interface simple shear test results when implementing
different roughnesses of the shaft. For the RD piles, a clear
peak appears at much larger displacement with much
higher shear resistance than for SD piles. For SD piles, the
unit shaft resistance is abruptly flattened due to the inter-
face slip.
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TEST RESULTS OF THE CYCLIC LOADING ON THE MO-
DEL PILES

Referring to the fig. 7b and the table 3 data, the most
interesting picture of the cyclic load settlement behaviour
is coming from the analysis of the cycle-by-cycle pile head
displacements {3,,.). The {6} one-cycle-displacement (fig.
7b} as a function of the "cyclic stiffness” of the model-pile
soil system. From the results on fig. 10, it ean be derived
that in our tests this "cyclic stiffness” is equivalent to
about 25 kN/mm, which is in agreement with the initial
static pile load-settlement stiffness {fig. 8 and 9). For RD
piles, the cycle by cycle displacement {fig. 11) steadily
decreases with cycles up to a certain number of cycles
depending on the applied cyclic load level. If the applied
cyclic load is considerably large, the cycle-by-cycle displa-
cement only over a few cycles slightly decreases, whereat-
ter it increases drastically. This figure strongly reflects a
soil "creep” behaviour for a pile behaviour under one-way
cyclic loading, in clay soils.
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Fi'g. 10 Cyclic load - Cyclic displacement

As expected, a very different behaviour comes out from
the SD pile tests (fig. 12). Aithough a drop of the cycle-by-
cycle displacement occurs occasionaly at the beginning of
the loading, it mostly increases steadily.

it the pile behaviour is predominantly governed by the
lateral stresses acting on the pile shaft, we can anticipate
some changes of the shaft resistance duting cyclic loading
{fig. 13 a,b). The figures indicate the unit shaft resistance
in the upper half of the pile, varying with the accumulated
displacement,

Under a highenough cyclic loadlevel, the unit shaft resis-
tance for RD-piles increases up to 4-5 mm of overall settie-
ment, then gradually decreases with increasing displace-
ment. On the contrary, under a lower cyclic load, the unit
shaft resistance drops clearly at the beginning depending
on the cyclic load level, followed by a slight recovery, the
shaft resistance becoming almost constant at the end.

The SD-piles’ unit shaft resistance drops in all cases parti-
culary at the beginning of the loading, then tends towards
or stable position. Both the unit toe resistance and the unit
shaft resistance before cyclic loading and after cyclic
loading are compared in figure 14,
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Regarding the unit base capacity, almost no influence of
static preloading for RD piles is measured, while q, is only
slightly degraded for SD piles. On the contrary q, increases
dramatically for buried piles, because of strong settlement
dependency of g, and some compaction effect underneath
the pile toe in this type of pile installation.

With respect to the unit shaft resistance, the ratio of
resistance before and after cyclic loading depends on the
applied cyclic load level on the RD pile. Under a large
cyclic load level the static f, is finally degraded. On the
contrary, applying a small cyclic load level on RD piles is
preferable to gain shaft resistance. For SD piles, the unit
shaft resistance is severly degraded in all cases. The
combination of the particle re-orientation and some interfa-
ce slip finally destroys the SD pile shaft capacity.

CONCLUSIONS

There is an analogy between the simple qualitative displa-
cement model pile behaviour under one-way cyclic loading
in sand and soil "creep” behaviour. Similar behaviour
trends as wellknown for RD piles in clayey soils are such
behaviour can be attributed to the internal change of the
sand fabric in the immediate surrounding of the model pile,
during cyclic load regardless of the pile roughness and
installation method, the cyclic "critical" load corresponding
to the turning point of the &,,, diagram under a one-way
cyclic loading, ranges from 70 to 80 % of the static con-
ventional ultimate capacity. This observation for sands
also coincides with the previous cyclic pile test results in
clayey soils.
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