水平力を受ける鉄鋼スラグ浅層改良杭に関する一解析法

- 現場実験結果との比較 -				
正会員	本間裕介*			
正会員	冨永晃司**			

解析	直列ばね	鉄鋼スラグ
地盤改良	水平地盤反力	

1.はじめに

筆者らは、鉄鋼スラグの新たな用途開発の一環として 鉄鋼スラグで杭頭周辺地盤を改良し、杭基礎の水平抵抗 増大を図る工法(以降、スラグ浅層改良杭と呼称)の開 発を手掛けている。今までに実施した水平加力実験結果 から、杭の水平抵抗増大効果があること¹⁾、およびスラグ の力学的特性の経時的変化による杭の水平抵抗増大効果 のあること²⁾等を確認した。また、スラグ浅層改良杭は 改良部と杭とが一体化した挙動を示すのではなく、杭体 が改良部に対して相対的に変位し、かつ改良部は周辺地 盤に対して相対的に変位する挙動を示す知見を得ている³⁾。

以上の実験結果を踏まえ、さらにスラグ浅層改良杭に 関する水平抵抗の評価法を確立するため、杭-スラグ-地盤系の挙動性状を考慮した解析モデルの構築を行って きた。本報告は、この解析法を提示するとともに、大型 土槽を用いたスラグ浅層改良杭の現場水平加力実験結果³⁾ (実験ケースは表1参照)についてシミュレーション解 析を行い、構築したモデルの適用性についても検討を行 った内容を報告する。なお、本報告では転炉スラグ (Case2)を対象に行ったシミュレーション解析結果につ いてのみ報告していることをお断りしておく。また、現 場水平加力実験については、文献3)を参照されたい。

Casa	杭径	载荷古注	表層改良部			養生期間
Case	B(mm)	単約1月ノノノム	材料	改良幅	改良深さ	Month
Case1	114.3	一方向	無	-	-	-
Case2	114.3	正負交番	転炉スラグ	3B	1B	3M
Case3	114.3	正負交番	混合スラグ	3B	1B	3M

表1 現場水平加力実験ケース

2.シミュレーション解析手法

本解析法の基本モデルは、図1に示す曲げ剛性 EI を有 する杭全長に非線形性を考慮した Winkler 型の地盤ばねを 取り付けた梁-ばねモデルである。実際の解析手法は、 地盤ばねの非線形性を考慮して、多層に分割した各分割 要素に式(1)を適用して各物理量の一般解を求め、各要素 境界における連続条件、杭頭および先端の境界条件から 多元連立方程式を解く方法である。

$$\frac{d^2}{dz^2} \left[EI \cdot \frac{d^2 y}{dz^2} \right] + k_h(z) \cdot y \cdot B = 0$$
⁽¹⁾

ここに、*EI*;杭体の曲げ剛性 (= 544 kN・m²)、y;水平変位 (m)、*B*;杭径 (m)、*k_h(z*);深さ z における水平地盤反

カ係数 (kN/m^3) である。まず、浅層改良部を除く範囲の $k_h(z)$ は、建築基礎指針 $^{4)}$ で提示されている推奨式を用いた。

ついで、浅層改良部における水平地盤反力係数 k_h は、 図 2 に示すように、杭 - スラグ - 地盤系において、杭と 改良部間の抵抗ばね(以降、改良内部抵抗ばね K_{hi} と呼 称)と改良部と地盤間の抵抗ばね(以降、改良部周面抵 抗ばね K_{hs}と呼称)とに分離した非線形集中ばねを直列に 連結したモデルを用いることにした。しかし、改良部周 面抵抗力は、改良部側面、改良部底面の摩擦抵抗力およ び改良部前面の受働抵抗力などの合力として生じるが、 これらの抵抗力成分を分離して評価することは難しい。 したがって、本解析における各抵抗ばねは、各抵抗力と 相対変位量との関係から評価することとした。

改良部周面抵抗ばね K_{hs}は、図 5 に示すように、Konder 型双曲線⁵⁾に基づき、浅層改良部周面の全抵抗力 R_s と改 良部変位 y_s/B の関係を近似して得られた近似曲線の割線 剛性として与えた。ここで、浅層改良部の全抵抗力 R_s は、 図 3 に示すように、地表面位置と改良部下端深度 0.1m の 2 点間の曲げモーメント差を区間長で除したせん断力とし て評価した。また、改良部変位 y_s は、B 方向加力時に測 定した改良部変位 D3 と D4 の平均値を用いた(図4参照)。

An analysis of laterally loaded pile in partially improved soil by iron and steelmaking slag HOMMA Yusuke, TOMINAGA Koji –Comparisons between field test results and predictions-

改良内部抵抗ばね *K*_{hi} についても、杭が改良部から受け た抵抗力 R_iと改良部内で杭が変位した量 y_i/B の関係から、 同様な方法で算出した。なお、抵抗力 R_iは R_sと同じ値を 用いることにし、変位 y_i は地表面位置での杭体変位 y_G か ら改良部変位 y_sを差し引くことで求めた。以上の仮定の 下で、浅層改良範囲における水平抵抗ばね K_h (kN/m) は上 記の K_{hi} と K_{hs} とを直列的に連結 (以降、直列抵抗ばねモ デルと呼称)した式(2)で与えた。なお、上記のばね K_hは、 力 (kN) と変位(m)の関係に基づく集中ばね(kN/m)で表し ている。したがって、式(1)に適用する浅層改良部ばねと して、杭の見付面積 (B・D) で除した式(3)で示される水 平地盤反力係数 kh を用いている。

$$K_{h} = K_{hs} \cdot K_{hi} / (K_{hs} + K_{hi})$$

$$k_{h} = K_{h} / (B \cdot D)$$

$$(2)$$

$$(3)$$

3.現場水平加力実験結果³⁾との比較

加力点の水平荷重~変位関係の実験値と解析値を比較 して、図 6 に示す。なお、この図の左側の図は、小変位 時(y / B 4.0 %)を拡大した図である。ここに、提案解 析法の有用性を検討するために、改良部と杭とが一体化 し剛体と仮定した解析結果(改良部周面抵抗ばね K_{hs}のみ で評価)も付記している。ただし、浅層改良部範囲の杭 体の曲げ剛性に浅層改良部の剛性は、考慮に入れていな い。これらの図から、以下のことがわかる。

全体的に実験結果に即して各抵抗ばねを決めたことか ら、実験結果の傾向を良く表現できている。 微小変位 (y / B=1.0% 以内)では、*K_{hs}*のみを考慮したケースの方 が提案解析法に比べて実験値に近い傾向を示す場合があ るが、それ以降は、提案手法の方が実験値と良く一致す る結果が得られている。 大変位までの挙動は、各手法 による違いがあまり見られない。直列抵抗ばねモデルは、 構成する抵抗ばね(K_{hs}および K_{hi})のうち、ばね剛性の小 さい抵抗ばねの影響を大きく受ける。図 5 からもわかる ように、変位の増加に伴って改良部周面抵抗ばね K_{hs}の剛 性が改良内部抵抗ばね K_{ii} より小さくなる傾向があり、大 変位時においては、改良部周面抵抗ばね K_{hp}の影響が大き

*ジャパンパイル株式会社

**広島大学大学院国際協力研究科

く反映されたものと考えられる。そのため、各手法によ る違いがあまり現れなかったものと判断される。

つづいて、曲げモーメントの深さ方向分布について、 図 7 に示す。また、各荷重時の最大曲げモーメントの比 較を、表 2 に示した。これらの図表から、各手法ともに 最大曲げモーメントが発生する深度など、形状分布は実 験値を良く表現できていることがわかる。しかし小変位 時では、K_{hs}のみ考慮したケースの最大曲げモーメントは、 実験値に対して過小評価している。これに対して、提案 解析法の方が実験値に近い傾向を示している(表 2 の網 掛け部を参照)。

4.まとめ

提案した直列抵抗ばねモデルは、スラグ浅層改良杭の 杭体応力および杭体変位等を大変位時まで精度良く評価 できることを示した。今回、浅層改良部の抵抗ばねを実 験結果に基づいて決定したが、今後は、実験データの蓄 積から、実設計に適応できる改良部の抵抗ばねに関する 評価法の確立を計りたい。

表 2 最大曲げモーメントの比較

↓ 最大曲げモーメント							
ケーフ	荷重	実験値	K _{hs} のみ		提案手法		
· ^	(kN)	(kN · m)	(kN·m)	比率(/)	(kN·m)	比率(/)	
	1.0	0.19	0.25	(1.32)	0.27	(1.43)	
	2.0	0.54	0.45	(0.82)	0.58	(1.08)	
Case2	3.0	0.97	0.79	(0.82)	0.91	(0.94)	
	4.0	1.44	1.24	(0.86)	1.36	(0.95)	
	6.0	2.58	2.51	(0.97)	2.57	(1.00)	
	8.0	3 00	4 19	(1.05)	4.11	(1.03)	

 1)本間ら:鉄鋼スラグによる改良 地盤中杭の水平抵抗増大効果確認 実験.第 49 回地盤工学シンポジウ Ц.pp.165-172,2004 2)本間ら:鉄鋼スラグによる地盤 改良中杭の水平抵抗-スラグの経 時変化による影響-,第40回地盤工 学発表会,pp.459-460,2005 3)本間ら:鉄綱スラグによる浅層 改良地盤中杭の繰り返し水平挙動 に関する現場実験,地盤工学ジャ -ナル,pp.45-55,2006 4) 建築基礎構造設計指針 (2001),p276(式 6.6.3), p277(式 6.6.4),p279(式 6.6.5) 5)二見ら:埋込み節杭のデータに よる摩擦杭の荷重~沈下量関係推

*JAPAN PILE CORPORATION

**Graduate school for IDEC, Hiroshima University