鋼管杭で支持されたパイルキャップの耐力実験

パイルキャップ	鉛直接合部	せん断強度
---------	-------	-------

1. はじめに

最近の既製杭を用いた埋込み工法は、杭先端地盤の拡 大掘削に伴う先端支持力の増大、節杭を用いた杭周面摩 擦力の増大、杭材の高強度化などにより、高支持力工法 として開発されている。

このような杭の高支持化に伴い、柱から杭に伝達され る荷重も増大する傾向にあり、杭頭接合部から杭頭への 応力伝達機構(軸力、せん断力、曲げモーメント)を明 らかにすることが必要と考えられる。ここでは、鉛直荷 重に対して、以下の2点に着目し、パイルキャップ実大 模型実験を行ったので、その実験結果について報告する。 なお、上杭は大きな水平耐力が期待できる SC 杭や鋼管杭 などを用いる場合が多いので、今回は鋼管杭を用いた実 験とした。

①単杭で支持されるパイルキャップと杭頭接合部の押込み耐力②2本杭で支持されるパイルキャップの曲げせん断耐力

2. 実験概要

(1)単杭モデル

単杭モデルの試験体概要を図-1 に示す。単杭は鋼管杭 (ϕ 500, SKK490, t=12nm)とし、杭のへりあきを 0.5D(D:杭 径)とし、平面が 1m×1m で高さが 1m のパイルキャップと した。また、鋼管杭の杭頭接合部は、図-2 に示す 2 種類 の接合タイプ [S1 タイプ:鋼管杭内にずれ止め処理 (t=9nm, b=25nm, 2 段)を施した形状²⁾、S2 タイプ:鋼管杭 頭部に端板を取り付けた形状]とした。コンクリート強度 (Fc)は 24N/mm² としたが、実験時の強度はそれぞれ 23.1, 22.7 N/mm²(材齢約 3 週間)であった。

載荷は、反力桁上にパイルキャップを設置し、油圧ジ ャッキから載荷板(500mm×500mm, t=32mm)を介してパイル キャップに載荷する方法とし、最大 6000kN までの載荷と した。なお、計測器の位置および計測点数は図-1 に示す。 (2)2本群杭モデル

2 本群杭モデルの試験体概要を図-3 に示す。試験体は、 杭のへりあきを0.5D (D:杭径)、杭芯間隔を2.5D とし、 幅 1.0m で奥行き2.25m の梁とした。また、せん断補強筋 と梁せいをパラメータとし、G1 試験体は梁せい0.8m でせ ん断補強筋が無いタイプ、G2 試験体は梁せい0.6m でせん 断補強筋(D13@125)で補強したタイプとした。両試験体と もに、終局せん断耐力は同程度になるように設計を行っ た。また、パイルキャップ中に2本の鋼管杭を埋込み(L =10cm)、さらに、この鋼管杭はSC 杭の杭頭部に溶接接 合し、2本群杭で支持させる構造とした。コンクリート強

Experimental Study on Ultimate Strength of Pile Cap with Steel Pile

正会員	○小林	恒一*1	同	田中	佑二郎*1
司	林	静雄*2			

度(Fc)は 24N/mm²としたが、実験時の強度は、それぞれ 21.1, 21.8 N/mm²(材齢約3週間)であった。

載荷は、パイルキャップ上面のジャッキから載荷板 (50cm×50cm,t=32mm)を介して鉛直載荷する方法とし、 試験体が破壊するまで行った。なお、計測器の位置およ び計測点数は図-3に示す。

KOBAYASHI Koichi, TANAKA Yujiro, HAYASHI Shizuo

3. 実験結果

(1)単杭モデル

ジャッキ荷重とずれ変位の関係を図-4 に示す。なお、 ずれ変位は、パイルキャップと杭体の鉛直方向の変位差 とした。この図から、荷重 1000 kN まではほとんどずれ 変位が発生せず、その後、すれ変位が発生し始めた。ま た、S1 試験体では 4000 kN、S2 試験体では 5000 kN でず れ変位が大きくなる傾向であったが、最大荷重 6000 kN でも 3~4mm 程度のずれ変位であった。パイルキャップの ひび割れ状況であるが、両試験体ともに、パイルキャッ プ底面で杭外周面から放射線状のひび割れとパイルキャ ップ側面で縦方向のひび割れが発生したが、ひび割れ幅 は 0.2mm 以下の微小なものであった。

また、ジャッキの載荷 荷重~杭頭軸力の関係を 図-5 に示す。なお、杭頭 軸力は、杭体のひずみから 算定したものであり、断面 積として S1 試験体は中詰め コンクリート+鋼管の等価 断面積で評価し、S2 試験体 は鋼管杭のみの断面積とし

た。4000kN を超える範囲で載荷荷重~杭頭軸力の間に S1、 S2 試験体ともに若干の差が生じているが、S1 試験体はず れ変位の発生により、中詰めコンクリートの軸力が反力 桁に一部伝達されたことが原因と考えらえる。また、S2 試験体では、偏芯に伴う曲げの影響で鋼管杭の一部が降 伏したこと等が原因と考えられる。

(2)2本群杭モデル

せん断力~鉛直変位量(D1, D3, D5)の関係を図-6 に示す。 また、最終ひび割れ状況を写真-1 に示す。両試験体とも、 最終的にはせん断破壊し、最大せん断力は G1 試験体が 2079 kN、G2 試験体が 1900KN であり、せん断耐力に差が なかった。

また、パイルキャップのひずみ分布であるが、ベース 筋のひずみ分布は載荷点で最大となる単純梁³⁾のひずみ分 布形状であった。ただし、杭頭部上に配筋されたベース 筋には、最大 85μの圧縮ひずみが生じており、杭頭部の 回転拘束の影響を受けることがわかった。

図-6 せん断力~鉛直変位量の関係

表-1 実測値と耐力値の比較

	史睦仿	耐力計算(せん断)				耐力計算(曲げ)		
試験体	天歌旭	フーラ	フーチング 梁			梁		
	Q (kN)	長期 (kN)	短期 (kN)	長期 (kN)	短期 (kN)	終局 (kN)	せん断 ひびわれ 強度(kN)	短期(kN)
G1	2079	394 (5.3)	591 (3.5)	787 (2.6)	1181 (1.8)	891 (2.3)	808 (1.4)	1110 (1.9)
G2	1900	276 (6.9)	415 (4.6)	456 (4. 2)	684 (2.8)	809 (2.3)	616 (1.5)	1097 (1.8)
※()内の数値は、耐力計算値/実験値(是大せん断力)の比を示す なお せん								

断ひび割れ強度の()の数値は、実験値をせん断ひび割れが発生した荷重とした。

4. まとめ

(1)単杭モデル

荷重 6000kN までパイルキャップを載荷したが、両試験 体(S1、S2)ともに杭頭接合部で付着破壊や支圧破壊が発 生しておらず、荷重が杭へ伝達されていることが確認で きた。従って、杭の長期許容支持力(ϕ 500)を 2000~ 2500kN とした場合、本接合部は終局荷重レベルまで杭に 荷重を確実に伝達できると考えられる。さらに、長期荷 重レベルではずれ変位が 0.5mm 以下であることから、上 部構造に影響を与えないことが確認できた。

(2)2本群杭モデル

今回の実験から得られた最大せん断力と設計耐力値の 比較を表-1 に示す。実験値は、既往の設計式^{4)、5)}を用い た耐力計算値を上回る結果となった。特に、実験から得 られたせん断ひび割れ発生荷重は、せん断ひび割れ強度 式⁵⁾の値の 1.4~1.5 倍であった。これらの比較検討より、 パイルキャップの短期許容せん断力は、せん断ひび割れ 強度式で評価できると考えられる。 <

1)日本建築学会:鉄筋コンクリート造配筋指針・同解説、2003年

2)建築研究所:建設省総合技術開発プロジェクト「新建築構造体系の開発 性能評価分科 会・基礎 WG 最終報告書」、平成12年3月

3)日本建築学会:鉄筋コンクリート構造計算規準・同解説一許容応力度設計法→、2000年 5日本建築学会:鉄筋コンクリート構造計算規準・同解説一許容応力度設計法→、2000年

*1 ジャパンパイル㈱

- *1 JAPAN PILE CORPORATION
- *2 東京工業大学 建築物理研究センター 教授・工博

*2 Prof, S.E.R.C., Tokyo Institute of Technology, Dr.Eng.

³⁾日本建築学会:建築基礎構造設計指針、2002年