鉛直載加を受けたパイルキャップの耐震性能評価

単杭

正会員	中沼	弘貴*1	岸田	慎司* ²
	小林	恒—*3	田中	佑二郎*3

パイルキャップ

鉛直載荷

1. はじめに

既製コンクリート杭の高支持力化に伴い、柱から杭へ 伝達される荷重も増加する傾向にある。このため長期荷 重レベルでもパイルキャップに長期許容圧縮応力を超え^(上面:球座仕様) る鉛直応力が作用する場合も考えられる。したがって、 このような応力状態での杭頭接合部から杭への応力伝達 機構を明らかにすることが必要である。そこで鉛直荷重 に着目し、 杭頭接合部の耐力の確認 杭頭周辺部に 補強材を配した場合の耐力の確認 の 2 点を目的とした パイルキャップ載荷実験を実施した。

2. 実験概要

図 - 1 に載荷装置を示す。試験体を逆さに配置して載 荷を行った。なお試験体を逆さにしたのはパイルキャッ プの杭側のひび割れ観測を行うためであり、実験には影 響がない。杭の上にジャッキ、球座を設置して軸力のみ を試験体に加えた。加力は荷重制御とし杭の長期荷重の 3000KN、6000KN、7500KN を最大荷重とする 3 サイク ルで加力した。図 - 2 に試験体 NO.2 の形状を示す。現 在の設計では杭の径からパイルキャップの寸法を決め、 配筋はベース筋を D16@100 とし袴筋と帯筋を D13@ 300 としている。一般的な配筋をした試験体 NO.1 を標 準型とし、標準型に補強筋を加えたものを試験体 NO.2 とし設計した。経済型としベース筋を 9@150 のワイ ヤーメッシュ筋に変更したものを試験体 NO.4 とし、経 済型の配筋に補強筋を加えものを試験体 NO.3 として設 計した。表 - 1 に試験体緒元、表 - 2 (a) コンクリート (b) 鉄筋 の材料特性を示す。

3. 実験結果

全ての試験体において上面に放射線状のひび割れが入 ると同時に側面中央部からひび割れが入り、側面のひび 割れが縦に貫通した時点で帯筋と外側のベース筋が 1000µ~2000µ伸びた。(ベース筋の歪に関しては4-2 で示す。)その後帯筋とベース筋は荷重に比例して伸び 最初に帯筋が降伏し、次に外側のベース筋が降伏した。 最終的に試験体 NO.4 は破壊に至った。他の試験体は最 大荷重を 7500KN としたために破壊には至らなかった。 4. 考察

4-1 コンクリート歪

図 - 3 に 3000)KN までの有効断面積率のグラフ	フを示す。
有効断面積率 =	コンクリート歪(実験 値)	(1)
		(1)

Evaluation study on seismic performance of compressed pile-cup at axial loading

図 - 1 載荷装置

(b) 姓傑

試験体緒元 表 - 1

図-2 試験体形状(NO.2)

試験体	ベーン	ス筋	スパイラル筋	備考(NO.1と比較)	
NO.1 (標準型)	D160200(6本)		なし		
N0.2 (標準型+補強筋)	D160200(6本)		D 13050 I=150mm 720	・スパイラル筋(I=150mm)を使用	
N0.3 (経済型+補強筋)	90150(9本)		D 13@100 I=300mm 720	・ベース筋にワイヤーメッシュに変更 ・スパイラル筋(I=300mm)を使用	
NO.4 (経済型)	90150(9本)		なし	・ベース筋をワイヤーメッシュに変更	
【共通因子】					
杭材	杭材 SC杭(600,SKK490,t=90mm,t _s =19mm,L=500m		KK490,t=90mm,t _s =19mm,L=500mm)		
パイルキャ	Fヤップ 1.2m×1.2m×1.2m、Fc=24		1.2m×1.2m、Fc=24N/mm2		
埋め込み	Ē			100mm	
はかま角	6	D 130300(5本)		D 130300(5本)	
帯筋	帯筋		D 130300(3本)		

表-2 材料特性

(a) = 1 - 1 - 1						
試験体	割線剛性 ^{*1} (×10 ⁴ MPa)	圧縮強度 (MPa)	割裂引張強度 (MPa)	最大荷重時歪 (%)		
NO.1	2.72					
N0.2	2.72	28 00	2 50	0 10		
NO.3	2.71	20.00	2.59	0.19		
NO.4	2.71					
			*1 1/3	b 時割線剛性		

供試体	種類	降伏応力度	降伏歪	ヤング係数	破断強度
		(MPa)	(µ)	(×10 ⁻ MPa)	(MPa)
D16 ベース筋	SD345	366.5	2021	1.81	519.3
D13 帯筋 袴筋	SD345	385.3	2148	1.81	517.7
D13 スパイラル筋	SD345	394.0	2259	1.78	565.6
9 メッシュ筋	SD345	366.5	3754	2.10	543.6
鋼管	SKK490	397.7	4326	1.71	515.2

NAKANUMA Hiroki, KISHIDA Shinji, KOBAYASHI Koichi, TANAKA Yujiro (1)に示す式の計算値とは弾性計算で求められる歪で ある。実験値を計算値で割ることで、荷重を負担してい るパイルキャップの断面積の割合を求めている。有効断 面積率=1の状態は、図-4に示す斜線部のようにパイ ルキャップが全断面で力を負担している状態を示す。図 -3のグラフから計測を行った中央部では、パイルキャ ップ全体で応力伝達を行っている。図-5は3000KN時 の袴筋歪を示す。袴筋歪は圧縮100µ以下で小さく均等 に圧縮されている。鉄筋と同様にコンクリートも均等に 圧縮されていることがわかる。このことからパイルキャ ップは、中央部だけでなくすべての断面で荷重を負担し ているとわかる。

4-2 ベース筋歪

図 - 6 は、試験体 NO.1 のベース筋歪 (グラフの計測 点を図 - 7 に黒丸で示す。)を示し、図 - 7 に試験体 NO.1 6500KN のひび割れ状況を示す。ベース筋は側面 や上面にひび割れの発生した 4000KN ではベース筋歪に 変動はない。6500KN を超え、ひび割れが図 - 7 に示し たようにひび割れが貫通すると歪が 2000µ 大きくなる。 このことからベース筋は、上面のひび割れに対して効果 がなく拘束効果があるとわかる。

4-3 スパイラル筋歪

図 - 8 は、試験体 NO.2 スパイラル筋歪 (グラフの計 測点を図 - 7 に黒丸で示す。)を示し、図 - 7 に試験体 NO.2 6000KN のひび割れ状況を示す。4000KN で側面 から上面に到達するひび割れが発生し、1000KN 加えて 100µ 歪む程度である。6000KN を超え、図-9 に示した ようにひび割れが貫通すると1000KN 加えて 300 µ 歪む 程度の効果がある。このことからスパイラル筋は上面の ひび割れに効果が少なく、ベース筋同様にひび割れが貫 通すると効果が現れるとわかる。

4-4 めり込み量

めり込み量を図 - 9 に示す。めり込み量は、杭がパイ ルキャップにめり込んだ量を正として示す値である。 (めり込み量 = 杭頭変位 パイルキャップ変位) スパイラル筋の有る試験体 NO.2 と標準型試験体 NO.1 は同じような形状を示す。このことからスパイラル筋は 杭のめり込みに効果がないとわかる。

4-5 耐力

杭の短期荷重である 6000KN では、どの試験体も破壊 に至っていない。装置の関係上全ての試験体に破壊まで 荷重を加えていないため、鉄筋が最初に降伏した時点で 比較する。表 - 3 に試験体のひび割れ発生荷重と降伏荷 重を示す。ひび割れはすべて 5000KN 前後で発生してい

- *2 芝浦工業大学工学部建築学科 助教授・博士(工学)
- *3 ジャパンパイル(株)

る。試験体 NO.1 は 6500KN で帯筋が降伏し、試験体 NO.2 は 7500KN まで荷重を加えても降伏した鉄筋がな く 7500KN 以上である。試験体 NO.3 は 5500KN で帯筋 が降伏し、試験体 NO.4 は 5000KN で帯筋が降伏した。 このことから標準型では杭の短期荷重では鉄筋が降伏し ないことがわかる。

5. 結論

1) すべての試験体において杭の短期荷重 6000KN では 破壊に至っていなく、標準型にスパイラル筋で補強した 試験体 NO.2 の耐力が大きいことが確認できた。 2) すべての試験体において長期荷重 3000KN までは、 コンクリートが全断面で圧縮力を負担していることが確 認できた。

3) スパイラル筋はめり込み量と上面のひび割れに影響 がないが、帯筋同様に拘束効果があると考えられる。

 1)日本建築学会、鉄筋コンクリート構造 計算基準・同解説、1999年
2)小林恒一、田中佑二郎他、 鋼管杭で支持されたパイルキャップの 耐力実験、日本建築学会大会学術講演梗概集、P.325~326、2005年9月

- * 1 Tokyo Metropolitan University
- * 2 Associate Professor, Shibaura Institute Technology ,Dr.Eng
- * 3 JAPAN PILE CORPORATION

^{*1} 首都大学東京大学院都市環境科学研究科建築学専攻