基礎スラブと接合したPHC杭の曲げ性能に関する実験的研究 (その3 頭部拘束を高めた実験とその結果)

小嶋一好*1 正会員

永井興史郎*2 同 同 前田耕喜*3

同 平川恭章*4 同 小椋仁志*5

PHC杭 杭頭接合部 杭頭固定度 杭頭部アンカー筋 スタット、アンカー アンボント、アンカー

1.はじめに

前報 ¹⁾では、靱性を期待することが難しい PHC 杭 基礎について、地震時の地中での杭体の変形を想定し、 変形性能を改善するための新たな杭頭接合方法を提 案、基礎スラブを接合した状態で、杭種、作用軸力、 杭頭接合方法等を換えた曲げ変形性能に関する実験の 結果を報告した。しかし、基礎スラブの回転が大きく、 杭頭曲げモーメントが予想以上に小さくなり杭中間部 の曲げ破壊となったこと、高軸力の試験体が脆性的な 破壊をしたため、大きな変形まで検討することが出来 なかったことなど、不十分な点があった。そのため、 本報告では、基礎スラブの拘束を高め、高軸力の試験 体に SC 杭、鋼管杭を用いて同様の実験を行った結果 について、全体の概要(その3)と杭頭接合部の挙動に ついて(その4)報告する。以下、前報の実験を「'01 年」、今回を「'02年」と称する。

2.試験体

試験体は'01 年同様、PHC 杭 300 C 種、軸力 294kN (30tf 長期)を標準としたが、極限支持力を意図した軸 力 883kN(90ff)に対しては、SC 杭 318.5 (SKK400)、鋼管杭 318.5 t=10.3mm を用いた。'02 年 6体の試験体一覧を表-1に、詳細を図-1に示した。

表-1 試験体一覧

実験年	記号	杭種	軸力(kN)			スタッドアンカー			アンボンドアンカー		
			0	294	883	無し	6本	9本	6本	9本	
'02	FC	С	_	0	_	0		_	-	-	
	CC	С	_	0	_	0	_	_	_	_	
	SC	С	_	0	_			0	-	_	
	UC	С	_	0	_	_	_	_	_	0	
	Usc90	SC	_	_	0	-	-	_	-	0	
	Usp90	鋼管	-	1	0	-	-	1	-	0	
0 -		@ - I				7 A - 1 7 1 + -			_		

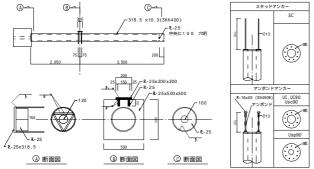


図-1 Usp90試験体

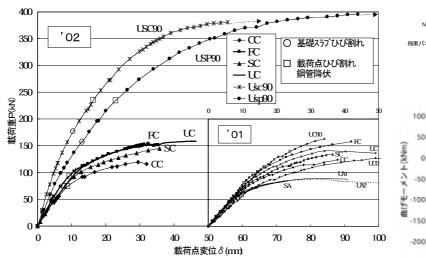
図-2 アンカー筋詳細図

'01 年同様、基礎スラブへの埋め込みは杭頭固定を 想定した試験体 FC の 30cm 以外は全て 5cm とした。 杭頭部アンカー筋は仮想柱の短期耐力が杭材の短期許 容耐力を上回る配筋とし、材質は SD345 相当の鉄筋

とした。杭頭部アンカー筋詳細を図-2に示した。基 礎スラブも'01 年試験体と同様である。試験体記号 F は 30cm 埋め込み、C は 5cm 埋め込みで共にアンカー 筋無し、S はスタッドアンカー、U はアンボンドアン カーを示す。次の記号 C は PHC 杭 C 種、sc は SC 杭、sp は鋼管杭を示している。最後の記号 90 は作用軸力(tf) を示し、標準の軸力 294kN の場合は略した。

3.試験装置・計測

加力方法も、後述の図-3 に示すように、'01 年と同 様、地中の杭の応力・変形を近似的に模擬した1次不 静定梁の1方向載荷方式 心を採用し、載荷点位置は杭 頭の曲げモーメントの増大をねらって'01 年に比べて 20cm 基礎スラブ寄りに変えた(図-3 の L1=2000,L2=3300)。 載荷ステップは、軸力作用時の杭材の短期許容、ひび割 れ、鋼材降伏、破壊モーメント荷重の設計値などを考慮 して決めた。短期許容モーメント荷重を超えた新規荷重に対し ては、次ステップ荷重までの中間荷重でも載荷した。測 定項目は、載荷重と支点反力、杭体の変形・ひずみ、 杭頭部アンカー筋のひずみ、基礎スラブ・杭頭部の回 転角、導入軸力の変動であるが、今回の実験ではさら に基礎スラブコンクリート内の圧縮ひずみを測定する ため、杭頭部端版近くにモールドゲージを埋め込んだ。


4.ひび割れ、終局時荷重

'01 年と同様に各実験の載荷点における杭体ひび割 れモーメント Mcr(kN·m)、破壊モーメント Mu に対 応する載荷重 Pcr(kN)、Pu、杭頭モーメント Mi、杭 中間部モーメント M2、杭載荷点変位 (mm)、Mcr、Mu に達したときの杭体のせん断力 Ocr(kN)、Ou と文献 2) によって求めた終局せん断耐力 Qsu を表-2 に示した。 Pcr はコンクリートひずみが停留し始めた時とし、Pu は載荷点の曲げ圧縮による被りコンクリートの破壊荷 重とした。図-3 に M1、M2、Q を求めた力学モデルを 示す。各試験体のひび割れは、CC、SC、UC では載 荷点下端付近から生じ、基礎スラブ表面、杭頭部へ と進行し、最後に載荷点(杭上面)付近での曲げ圧縮 破壊となった。曲げ破壊後も軸力を保持していた。

表-2 杭体ひび割れ、終局時の諸量

実験年	記号	Mrrに達した時					Misi達した時					
		Pcr	M	MŁ	δ	Qcr	Pu	M	Me	δ	Qi	Qsu
'02	FC	92.6	60.8	77.5	9.10	69 .1	151.5	89.9	132.7	35.46	111.3	140.9
	\propto	74.2	32	90.4	8.81	46.8	115.8	0.0	144.2	31.95	72.1	115.4
	SC	73.8	50.6	60.4	7.95	55.5	144.7	88.5	125.1	35.78	1068	115.4
	ıc	102.8	50.8	96.4	11.86	73.6	156.4	49.9	163.7	47.30	106.8	115.4
	Usc90	235.2	1540	197.0	16.34	175.5	380.6	212.1	341.9	55.75	277.0	_
	Usp90	234.4	160.3	192.1	22.94	176.2	395.1	189.2	374.2	94.01	281.7	_

Bending test on Prestressed Hi-strength spun Concrete pile with pile cap (Part 3)



図-4 載荷重P-載荷点変位 δ 関係

一方、FC では、杭頭部上面(引張側)がひび割れ (P=55.2kN)、次に載荷点(杭下面の引張側)にひび割れ が生じ、最終は杭頭部のせん断ひび割れを生じたが、 下端の圧壊に伴う曲げ圧縮破壊となった。

Usc90、Usp90 は、Pcr(鋼管降伏)荷重以前に基礎ス ラブ表面の杭接合部より上に放射状のひび割れが生 じ、Pu 荷重近くで一部破壊した。一方、杭体は載荷 点の鋼管の引張降伏の後も載荷重の増大とともに変 形も増大し、軸力導入用の鋼線が杭内壁に接触する おそれがあるため載荷を中止した。

Usc90、Usp90とFCを除く全ての実験において、Pcr 荷重では基礎スラブ表面のひび割れは見られず、Pu 荷重近くで杭接合部の上側の基礎スラブ表面にひび 割れが生じた。そのひび割れ幅は 0.1 ~ 0.5mm 程度で 基礎スラブの破壊は見られなかった。試験体 FC は Pu でもひび割れは見られなかった。試験体 Usc90、Usp90 は、実験後基礎スラブのひび割れ部をはつり調べた 結果、全て被りコンクリート部の表面破壊であり、 鉄筋内のコンクリートは健全であった。

5. 載荷重一載荷点変位関係

各実験の載荷重 P(kN)・載荷点変位 (mm)の関係 を図-4 に示した。'01 年の実験では、従来から採用さ れているスタッドアンカーを用いた Α 種杭の試験体 SA は、破壊までの変位量がアンボンドアンカーを用 いた UA1、UA2 に比べて小さい。また、C 種杭の SC、 アンカー筋無し埋め込み 5cm の CC、同じく埋め込み 30cm の FC は、破壊までの変位量がアンボンドアンカ ーを用いた UC に比べて小さい。一方、アンボンドア ンカーを用いた UC0 と UC90 には軸力の影響が出てお り、軸力のない UC0 が UC90 に対して、最大荷重は小 さいが変形性能があることがわかる。

'02 年の軸力 N=294kN の実験では、破壊までの変位

。 座標(m) 図-5 SC,UCの曲げモーメント分布

量は UC が大きく、FC、SC、CC は同程度である。破 壊時載荷重は UC と FC がほぼ同程度で、SC、CC と 小さくなっている。N=883kN の Usc90、Usp90 は変位 量も載荷重も十分大きい。初期剛性は CC、FC、UC、SC ともほぼ同じであり、Usc90、Usp90 は若干高めであ る。'01 年と'02 年の実験を比較すると、基礎スラブの 回転剛性を高めた'02 年の初期剛性の方が全体に大き くなっている。

曲げモーメントの分布

'02 年の実験における載荷重と支点反力から求めたS CとUCの曲げモーメント分布を図-5に示した。55kNは 載荷点ひびわれまでの分布を代表しており、UCの値が 頭部でやや小さく、載荷点でやや大きい傾向にある。

載荷点でのひび割れモーメントはUCがSCに比べ大き い。ひび割れ荷重は、載荷点付近の引張側ひずみに停 留・低下が見られた時の荷重としたが、その時のひず みはSCが約500 μ、UCが800 μとかなりの差がありこの 影響によるものと考えられる。2段目のアンカー筋ま で降伏した時の荷重は、SCとUCではほぼ同じ92kN程度 であり、その時の曲げモーメント値の大小関係は55kN 荷重時と同様な分布を示している。

アンカー筋が降伏した後の杭頭部曲げモーメントはSCの 場合増大するのに対して、UCの場合はほとんど増大し ないが、載荷点の曲げモーメントは、UCの方が大きい。最 大荷重時の載荷点に近い圧縮ひずみはいずれもほぼ15 00 µ 程度であった。

1)小嶋一好、平川恭章他:基礎スラプと接合した PHC 杭の曲げ性能に関する実 験的研究(その1、2)、日本建築学会大会学術講演梗概集、2002.8

2)後藤、柴田:遠心力 PC(PHC)杭せん断耐力算定式、日本建築学会大会 学術講演梗概集、1985.10

Hirata Structual Engineering Corporation

* 2 摂南大学工学部教授 工博

Prof, Faculty of Engineering, Setsunan University, Dr. Eng.

*3 鹿島建設株

Kajima Corporation

*4㈱竹中工務店

Takenaka Corporation

*5(株)ジオトップ技術開発本部 工博

GEOTOP Corporation, Dr. Eng.

^{* 1 (}株)平田建築構造研究所