遠心成形高強度コンクリートの含水率に及ぼす内部微細空隙の影響

正会員	石川一真*1
同	桝田佳寛*2
同	菅 一雅*1

遠心成形	振動成形	高強度コンクリート
細孔径分布	含水率	シリカフューム

1. はじめに

筆者らは,高強度領域での遠心成形に用いる調合の遠 心成形性や微細空隙構造に与える影響について報告¹⁾して きた。本研究では,調合や成形条件を変化させ,このよ うな遠心成形コンクリート内部の微細空隙と含水率の関 係について検討し,遠心成形による効果について分析し た。

2. 実験概要

2.1 使用材料,調合および練り混ぜ等の条件

使用した材料,調合条件,練り混ぜ等の条件を表-1, 表-2,表-3に示す。水結合材比は17%,23%,33% とし,シリカフュームはW/B=23%以下の調合に使用した。 混和剤はW/B=33%の調合にはナフタリン系高性能減水剤 を使用し,W/B=23%以下の調合にはポリカルボン酸系高 性能減水剤を使用した。

遠心成形供試体は,JIS A 1136 に示される外径 20cm, 高さ 30cm,厚さ 4cm の中空円筒形供試体に成型した。振 動成形供試体は,内部に鋼管を埋め込んだ型枠と振動台 を用いて遠心成形供試体と同形状の試験体と,外径 10cm, 高さ 20cm の円柱供試体を作成した。

なお,遠心成形後,調合 17S,23S はスラッジが発生せず,調合 23,33 はスラッジが発生した。

2.2 試験項目

試験項目を表 - 4 に , それぞれの試験に用いた試験体 を図 - 1 , 図 - 2 に示す。

含水率試験では,円筒供試体を軸方向に8 等分し、外 側面と内側面が残るようにエポキシ樹脂でコーティング した試験体を28 日間標準養生を行った。その後,破砕機 で粉砕し,105 の高温養生槽で乾燥させた。

そして,乾燥前と乾燥後の質量から,(1)式を用いて 含水率を求めた。

含水率=(乾燥前質量-乾燥後質量)/乾燥前質量・・・・(1)

細孔径分布測定試験では,試料を遠心成形供試体の厚 さ方向を2分してその中心部から,また振動成形した円 柱供試体の中心部から採取した。その試料をアセトン浸 漬後風乾し,粗骨材を取り除いた約5mm角に砕き,凍結 乾燥後,水銀圧入式ポロシメータを用いて,0.003~30µm の範囲の細孔容積を測定した。

t	セメント 早強ポルトランドセメント:密度3.14(g/cm³),比表面積4500(cm²/g)		
粗骨材 安山岩系砕石:表乾密度 2.62(g/cm³),粗粒率 6.32		安山岩系砕石:表乾密度2.62(g/cm³),粗粒率6.32	
細	骨材	安山岩系砕砂:表乾密度2.64(g/cm³),粗粒率2.66	
混	E材	Iトリンガ 仆系高強度混和材:密度2.90(g/cm³),比表面積3580(cm²/g)	
和 材	Si 材	シリカフューム:密度 2.20(g/cm³),比表面積 200000(cm²/g)	
混	N剤	ナフタリン系高性能減水剤	
札 剤	P剤	ポリカルボン酸系高性能減水剤	
-			

	表 - 2	調合条件		
調合 No.	17S	23S	23	33
水結合材比 W/B(%)	17	2	3	33
細骨材率 s/a(%)	44			
単位水量 ₩(kg/m³)	110 140			140
E材置換率(B×%)		1	0	
Si材置換率(B×%)	10 0)	
混和剤添加率(B×%)	P剤1.2	P 剤	0.8	N剤2.2

表 - 3 練り混ぜ , 成形条件 , 養生条件

	227	凍り混ぜ	空練り 30s	本練り	17S : 240 23S,23,3	Ds 3 : 180s
万 开	戊ド	遠心成形	初速 1G 420s	中速(1) 6G 120s	中速(2) 10G 60s	高速 30G 120s
剣	£ #	振動成形	4G 振動台	円柱:2層 円筒:3層	打ち 17 打ち 23	S : 各層 120s S,23,33 : 各層 60s
	Ĩ	臺生条件	前置き 30 3h	上昇 10 /h 4h	高温 70 7h	材齢7日まで 20 60RH

表 - 4 試験項目

試験名	試験方法
含水率試験	吸水乾燥による質量変化
細孔径分布測定試験 (細孔直径 0.003~30 µ m)	水銀圧入式ポロシメータによる

Influence of Micropores for Moisture of High Strength Concrete by Centrifugal Compaction

ISHIKAWA Kazuma, MASUDA Yoshihiro, SUGA Kazumasa

3. 実験結果および考察

3.1 含水率試験

各調合の含水率を図 - 3 に示す。振動成形供試体は W/B が大きいほど含水率も増加する傾向を示した。一方, 遠心成形供試体はシリカフュームを混入した調合 17S, 23S と混入しない調合 23,33 では,異なる傾向を示した。 これは調合 23,33 の場合,スラッジが発生した影響が大 きいものと考えられる。

3.2 細孔径分布測定試験

各調合の細孔径分布測定試験結果を図 - 4 に示す。振動成形供試体は,W/B が大きくなるほど全細孔容積も大きくなる傾向を示した。一方,遠心成形供試体は,スラッジが発生した調合 23,33 では,キャピラリー空隙と呼ばれる細孔直径 0.1~0.003µm の細孔が振動成形供試体に比較して少なくなる傾向を示した。

このことから,調合 23,33 の遠心成形供試体の含水率 の変化は,スラッジ発生に伴うキャピラリー空隙中の自 由水の減少が影響していることが考えられる。

そこで,全細孔容積と含水率の関係を図-5および図-6に示す。

振動成形供試体についてはよい相関を示すが,遠心成 形供試体についてはよい相関を示さなかった。

これは,水銀圧入式ポロシメータでは測定できないさらに小さな微細空隙であるゲル空隙(直径 0.003~0.001µm)の中に存在する自由水の変化が影響していることが考えられるが,今回の試験では明確にできなかった。 今後の課題としたい。

4. まとめ

振動成形供試体では含水率と全細孔容積は相関を示す が,スラッジが発生した遠心成形供試体では含水率と全 細孔容積は相関を示さず,細孔容積では測定できない微 細空隙に存在する自由水の影響を受けていることが考え られた。

参考文献

 ・一雅,桝田佳寛:遠心成形高強度コンクリートの 力学特性に及ぼす微細空隙の影響に関する研究,日本 建築学会構造系論文集,No.610,pp.7-12,2006.12

*1 ジャパンパイル

*2 宇都宮大学工学部建設学科 教授・工博

細孔直径0.003~30μmの全細孔容積(VOL.%) 本) 図 - 6 全細孔容積と含水率(遠心成形供試体) JAPAN PILE CORPORATION Prof., Dept. of Architecture and Civil Eng., Faculty of Eng., Utsunomiya Univ., Dr. Eng.

6.0

- 遠心成形外側