論文 遠心成形高強度コンクリートの長期物性に及ぼす養生方法の影響

菅 一雅^{*1}·桝田 佳寬^{*2}·石川 一真^{*3}

要旨:本研究は,遠心成形した圧縮強度 150N/mm²級の高強度コンクリートについて,養生 方法の違いがコンクリートの長期材齢における物性に及ぼす影響について検討した。成形方 法は遠心成形と振動成形の2種類,養生方法は常圧蒸気養生と標準養生の2種類を行った。 そして,遠心成形,養生方法の違い,長期材齢などの要因が圧縮強度,ヤング係数の物性値 の変化や細孔径分布の変化に及ぼす影響について比較検討した。その結果,常圧蒸気養生に よる遠心成形高強度コンクリート物性の長期安定性を確認することができた。 キーワード:遠心成形,高強度コンクリート,長期材齢,常圧蒸気養生,細孔径分布

1. はじめに

遠心成形技術に関する研究は,昭和20年代から昭和40年代にかけて多く行われ,電信柱や下水道管,既製コンクリート杭の製造技術に反映されてきた。既製コンクリート杭は,現在年間約300万t生産され,近年の既製コンクリート杭工法の高支持力化に伴い,より強度の高い杭が必要となってきている。

ところが、100N/mm²以上の遠心成形したコン クリートに関する研究報告は少なく、かつ常圧 蒸気養生後の遠心成形した高強度コンクリート の長期物性に関する研究もされていない。

筆者らは、これまで、100N/mm²以上の高強度 コンクリートについて使用材料や各種調合条件 が遠心成形性や常圧蒸気養生後の物性について 検討^{1)~2)}を行い、150N/mm²級における遠心成形 可能な使用材料、調合条件を検討してきた。

本研究は、常圧蒸気養生による 150N/mm²級の 遠心成形した高強度コンクリートの長期材齢に おける硬化物性について、標準養生や振動成形 した場合と比較して、その違いを把握するとと もに、常圧蒸気養生による長期物性の安定性に ついて検討を行った。

2. 実験概要

表-1に実験の要因と水準,表-2に使用材 料を示す。結合材料として,セメントは早強ポ ルトランドセメントとし,混和材は高強度混和 材とシリカフュームを用いた。また,骨材は既 往の超高強度コンクリートの研究で採用されて いる安山岩と硬質砂岩の2種類を用いた。

表-1 要因と水準

要因	水準
養生条件	常圧蒸気,標準
材齢	7日, 28日, 91日
骨材種類	安山岩系,硬質砂岩系
成形条件	遠心成形,振動成形

表-2 使用材料

セメント	早強ポルトランドセメント 密度 3. 14(g/cm³)
細骨材 S1	安山岩系砕砂 表乾密度 2.64 (g/cm³), 粗粒率 2.66
細骨材 S2	硬質砂岩系砕砂 表乾密度 2.60 (g/cm³), 粗粒率 2.58
粗骨材 G1	安山岩系砕石 表乾密度 2.62 (g/cm³), 粗粒率 6.32
粗骨材 G2	硬質砂岩系砕石 表乾密度 2.64 (g/cm³), 粗粒率 6.34
混和材 E	エトリンガイト系高強度混和材 密度 2.90(g/cm³)
混和材 Si	シリカフューム 密度 2.20(g/cm³)
混和剤 P	ポリカルボン酸系高性能減水剤

*1 ジャパンパイル(株) 技術開発部 (正会員)
*2 宇都宮大学教授 工学部建設学科 工博 (正会員)
*3 ジャパンパイル(株) 技術開発部

表-3 調合条件

No	W/B	s/a	単位量(kg/m³)							混和剤	
NO.	(%)	(%)	W	C	混和材 E	混和材 Si	S1	G1	S2	G2	B × %
1	17	44	110	518	65	65	782	988	_	_	1.2
2	17	44	110	518	65	65	—	_	770	996	1.6

[注]B:結合材(C+混和材)

調合条件は、表-3に示すような2種類の調 合とし,フレッシュ時のスランプも 0cm とした。

試験は表-4に示すように、圧縮強度、単位 容積質量、ヤング係数、細孔径分布を各材齢時 に行った。なお、細孔径分布試験は、調合 No.1 各試験体の中心部から試料を採取し、粗骨材を 取り除きながら約 5mm 角に砕き、凍結乾燥後水 銀圧入式ポロシメータにより細孔直径 0.003~ 60(μm)の範囲を測定した。

成形条件および養生条件を表-5に示す。

遠心成形は最大遠心力を 30G とし、比較用と して振動成形を行った。試験体形状は, 遠心成 形は φ 200×h300×t40(mm)の円筒試験体とし, 振動成形は o 100×h200(mm)の円柱試験体とし た。また、蒸圧蒸気養生は最高温度 70℃とし、 養生後脱型し 20℃60%RH の室内に保存した。標 準養生は,翌日脱型し標準養生を行った。

3. 試験結果

3.1 各成形・養生条件と単位容積質量の関係

各成形・養生条件における単位容積質量の測 定結果を図-1に示す。

遠心成形が振動成形より、単位体積質量が大 きくなる傾向を示し、遠心成形により脱泡され、 緻密化したことが判った。また,骨材種類,養 生, 材齢による顕著な差は認められなかった。

遠心成形と振動成形の単位容積質量から、遠 心成形により減少した空隙率を式(1)により算定 した。算定結果を図ー2に示す。

測定誤差のバラツキはあるが, 遠心成形によ り1.26~2.18%の空隙が減少した結果となった。

 $A = (\gamma 2 - \gamma 1) \times 100 / \gamma 2 \quad \cdot \quad \cdot \quad \cdot \quad (1)$ A:遠心成形による減少空隙率(%) γ1:振動成形の単位容積質量(t/m³) y 2:遠心成形の単位容積質量(t/m³)

表-4 試験項目

項目	試験方法
圧縮強度	JIS A 1108, JIS A 1136 材齢7日, 28日, 91日
単位容積 質量	JIS A 1108 材齢7日,28日,91日
ヤング係数	JIS A 1149 材齢7日,28日,91日
細孔径分布	水銀圧入式ポロシメータによる計測 材齢7日,28日,91日

表-5 成形条件および養生条件

IJ	頁目	条件						
成 形	遠心	1G 420s⇒6G 120s⇒10G 60s⇒30G 120s 試験体形状:φ200mm×h300mm×t40mm						
条 件	振動	4G 振動台 : 2 層 各 120s 試験体形状:φ100mm×h200mm						
養 生	常圧 蒸気	前置き 上昇 高温 自然徐冷 30℃ 3h⇒10℃/h 4h⇒70℃ 7h⇒20℃60%RH						
条 件	標準	湿潤養生 標準養生 20℃ 24h ⇒ 20℃一定						

3.2 各材齢における圧縮強度

各材齢時の圧縮強度を図-3~4に示す。

遠心成形した試験体の方が振動成形に比べ, 圧縮強度が高くなる傾向を示した。また,蒸気 養生した試験体は,遠心・振動成形ともに材齢 91 日まで強度増進を示した。一方,標準養生も 強度増進するが,材齢91日の時点においても蒸 気養生の圧縮強度まで達することはなかった。 これは,養生の違いによる含水率の影響も考え られるが,既往の研究³⁾でも高強度混和材を使用 した場合,初期に高温履歴を受けた試験体は材 齢91日でも標準養生より強度が高くなることが 報告されており,蒸気養生によって高強度混和 材がエトリンガイトなどの水和生成物を生成し, より緻密化されたことも推測される。

骨材種類の違いをみると,蒸気養生では安山

図-8 ヤング係数と単位容積質量の関係

岩系骨材の方が硬質砂岩系よりも若干強度が高 くなる傾向を示した。

3.3 各材齢におけるヤング係数

各材齢時のヤング係数を図-5~6に示す。

圧縮強度と同様に遠心成形した試験体の方が 振動成形に比べ,ヤング係数が高くなる傾向を 示した。また,ヤング係数は材齢28日まで増加 し,それ以降はあまり増加しない傾向を示した。

養生の影響をみると、安山岩系の骨材は材齢 28日の時点で、またいずれの骨材も材齢91日で は標準養生のヤング係数が高くなる傾向を示し た。これは、標準養生の方がシリカフュームに よる水和生成物や高強度混和材のエントリンガ イト生成が長期的に反応するため、形成される 内部細孔構造が蒸気養生の場合と違うことが推 測される。

四 11 次ルネ10座00幅11名頃の

3.4 圧縮強度,ヤング係数,単位体積質量の関係

材齢91日における圧縮強度,ヤング係数と単位体積質量との関係を図-7,8に示す。

圧縮強度,ヤング係数は単位体積質量が重い ほど高くなる傾向を示し,遠心成形と振動成形 によるコンクリートの緻密差が両物性値に影響 を与えていることが確認できた。

全材齢における各成形・養生条件のヤング係 数と圧縮強度の関係を図-9,10に示す。

骨材の影響で New RC 式より若干小さい傾向を示すが,ほぼ同様な増加傾向を示した。また,圧縮強度の増加に伴い両骨材ともに蒸気養生した場合の方が標準養生に比べ,圧縮強度に伴うヤング係数が小さくなる傾向を示した。このことから,常圧蒸気養生を行った場合,同一 圧縮強度に対するヤング係数の値は,標準養生の場合より小さくなる傾向となった。

図-12 各細孔直径範囲の細孔容積

3.5 成形条件と細孔容積の関係

材齢7,91 日における成形条件の違う各試験 体の各細孔直径の細孔容積と積算細孔容積の試 験結果を図-11 に示す。また,細孔直径範囲を 設定して求めた各直径範囲の細孔容積の関係を 図-12 に示す。

各材齢とも遠心成形による効果により,振動 成形に比べ細孔直径で0.01~1 (μm)の範囲にお

図-13 材齢,養生の違いと細孔容積の関係

ける細孔容積が減少する傾向となっている。

積算細孔容積をみると、遠心成形したものは l(μm)前後の細孔直径から、減少する傾向とな っており、前述した細孔直径範囲の減少が影響 を及ぼしていることが判る。

また、この細孔容積の減少は質量の変化とし ては微量であり、遠心成形による減少空隙量に 及ぼす量ではない。このことから、単位体積質 量の減少は今回測定した範囲以上の大きな空隙 の減少が影響しているものと考えられる。

3.6 材齢, 養生の違いと細孔容積の関係

材齢,養生の違う各試験体の各細孔直径の細 孔容積と積算細孔容積の試験結果を図-13 に示 す。また,細孔直径範囲を設定して求めた各直 径範囲の細孔容積の関係を図-14 に示す。

材齢7日時点での細孔容積をみると, 蒸気養 生したものは標準養生したものに比べ, 水和反 応が先行し細孔直径 0.01~1(µm)の範囲におけ る細孔容積が少ない傾向となっている。しかし, 細孔直径 0.003~0.01(µm)の範囲の細孔容積が, 逆に多くなる結果となった。

全体の傾向として,蒸気養生,標準養生とも に,材齢が経つほど0.01(µm)以下の微細孔の減 少が顕著な変化となっている。これは,シリカ フュームのポゾラン活性により生成させた組織

図-14 各細孔直径範囲の細孔容積

により緻密化され長期的に減少していったこと が推測される。

材齢7日から材齢28日へ経過したことによる 細孔径分布への影響みると,標準養生の場合は 細孔容積の多い範囲である細孔直径 0.003~0.1 (µm)の細孔容積が減少する傾向となっている。 前述したように、ヤング係数試験では,材齢28 日の時点で標準養生したものが蒸気養生したも のに比べ,ヤング係数が高くなる結果となって おり,この内部組織の変化がヤング係数に反映 されたものと推測される。

3.7 圧縮強度、ヤング係数と全細孔容積の関係

細孔直径 0.003~60(µm)の全細孔容積と圧縮 強度,ヤング係数の関係を図-15,16に示す。

全体の傾向として,全細孔容積が減少するほ ど圧縮強度,ヤング係数ともに増加する傾向と なっている。しかし, 蒸気養生と標準養生では, 全細孔容積の減少に伴う圧縮強度, ヤング係数 との関係は違う傾向を示した。

既往の報告^{3)~4)}では、ペーストやモルタルの 細孔容積と圧縮強度の関係に高い相関を示すこ とが報告されている。しかし、今回の試験結果 では、コンクリート圧縮強度と細孔容積の関係 は高い相関を示さなかった。この要因としては、 高強度コンクリート領域における骨材の影響⁵⁾ や養生方法の違いによる細孔組織の違いなどが 推測されるが、今回の試験では明確にすること はできなかった。

4. まとめ

(1) 遠心成形試験体は、振動成形試験体に比べ遠心成形効果により脱泡され、単位体積質量の増加や圧縮強度、ヤング係数の増加が確認された。 単位体積質量の増加から算定した減少空隙率は 1.26~2.18%であった。

(2)常圧蒸気養生した遠心成形試験体の長期材 齢における物性は、材齢91日においても圧縮強 度、ヤング係数とも安定し、また細孔容積も減 少して、より緻密化していることを確認した。
(3)遠心成形による効果が細孔径分布に及ぼす 影響としては、細孔直径 0.01~1(µm)の範囲に おける細孔容積が振動成形に比べ減少している ことが判った。

(4) 遠心成形試験体のヤング係数は,材齢 28 日 の時点で常圧蒸気養生した場合より標準養生し た場合の方が高くなる傾向を示し,細孔直径 0.003~0.1(µm)の細孔容積の減少がヤング係数 増加に寄与していることが確認できた。

(5) 遠心成形試験体における全細孔容積と強度 物性との関係をみると、全細孔容積が減少する ほど圧縮強度、ヤング係数は増加するが、常圧 蒸気養生と標準養生では異なる傾向を示した。

参考文献

 菅 一雅,桝田佳寛,小椋仁志:高強度コン クリートの遠心成形に及ぼす単位水量低減の

影響,日本建築学会大会学術講演梗概集,A-1, pp481-482, 2004.8.

- 2) 菅 一雅,桝田佳寛,小椋仁志:遠心成形す る高強度コンクリートの成形性や各種物性に 及ぼす調合の影響,日本建築学会大会学術講 演梗概集,A-1,pp543-544,2005.9
- 3) 陣内 浩, 桝田佳寛, 早川光敬: 初期に高温 履歴を受ける低熱ポルトラント、セメント・高強度用結 合材を用いた高強度結合材ペーストの強度 発現性状と微細構造, 日本建築学会構造系論 文集第 568 号, pp7-13, 2003.6
- 4) 河上浩司,西本好克,桝田佳寛:高強度コン クリートの圧縮強度発現と微細構造に関す る実験研究,コンクリート工学年次論文集, A-1,pp1075-1080,2005.7
- 5) 桜本文敏,鈴木清孝,武居幸次郎:超高強度 コンクリートに関する開発研究(その3骨材 の性質がコンクリートの強度性状に及ぼす 影響),日本建築学会大会学術講演梗概集, A-1,pp495-496,1990.10