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SEISMIC SLOPE STABILITY ANALYSIS:
PSEUDO-STATIC GENERALIZED METHOD

KA-CHING SANY and DoV LESHCHINSKY®

ABSTRACT

This paper extends a generalized slope stability analysis method to include pseudo-static forces. Formulation and
the subsequent numerical procedure of the extended generalized seismic slope stability analysis are presented.
Comparison with a closed form approach indicates that the generalized method yields the same safety factor as the
closed form -approach. This can serve as a partial verification of the accuracy of the numerical procedures.
Comparison with other rigorous limit equilibrium methods of seismic slope stability demonstrates that the presented

method yields the smallest factor of safety.
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INTRODUCTION

An extension of Baker and Garbers variational limit-
ing equilibrium approach to seismic slope stability analy-
sis was proposed by Leshchinsky and San (1993). The var-
iational approach yields a log-spiral slip surface for
homogeneous problems. Complicated geological condi-
tions, however, may require consideration of slip sur-
faces of a general shape. Generalized slope stability ap-
proach (Leshchinsky, 1990), which is partially based on
variational analysis, can then be used. It satisfies all limit-
ing equilibrium equations for a given slip surface.

This paper presents the formulation for the general-
ized approach to include seismic effects. A numerical
scheme for computer programming of the generalized ap-
proach is proposed. Comparison between the closed
form variational approach (Leshchinsky and San, 1993)
and the generalized approach is conducted. Comparison
with other rigorous methods of seismic slope stability
analysis is also presented.

FORMULATION

In seismic slope stability design that is based on a limit
equilibrium analysis, inertia forces are usually taken as
pseudo-static, expressed as a fraction of the gravitational
forces as'defined by a design horizontal acceleration fac-
tor Cs; i.e., C;is a fraction of the acceleration g (e.g., Sar-

ma and Barbosa, 1985). The following is a brief presenta-
tion of analysis and results. Details and in-depth under-
standing of the analysis can be obtained with the aid of
the provided references.

The potentially sliding mass is bounded by the soil sur-
face and a slip surface, denoted by y=7(x) and y=y(x),
respectively. The slip surface is acted upon by an
unknown distributed normal stress o(x). Utilizing
Coulomb’s failure criterion and by a straightforward ex-
tension of Leshchinsky’s (1990) formulation to include
C, the pseudo-static limiting equilibrium equations for a
sliding mass can be expressed as:

e i SXH

Jj=m X;

{¢j+ (e —w)y,—Fay’

—CyF(7=y)}dx=0 )
=" e+ —wiy
J —-Fflly()’—y)-a]}dx=0 &)
M= ?m 5' {[cj+(6—u)wj](y—xy')
J —17):I[a(yy’+x)—y(i;y)x]
5 G54 =0 ®

where H, V and M=the respective limiting equilibrium
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equations for horizontal forces, vertical forces and mo-
ments about the origin of the coordinate system; j=soil
layer number (there are m layers through which the slip
surface is passing); y’ =dy/dx; w;=tan (¢;), where ¢; is
the internal angle of friction of layer j; ¢;=cohesion of
layer j; xo and x,=the ordinates at which the slip surface
intersects the slope surface (see Fig. 1), and x;=the or-
dinate of the intersection with the lower boundary of
layer j; y=the weighed average unit weight of soil
column (y—y); u=the pore-water pressure and F=a
safety factor.

Using H to define F, and V and M as constraints, Bak-
er and Garber (1978) showed the isoperimetic problem to
be equivalent to the minimization of an auxiliary func-
tional G. Including the seismic loading, G is defined as
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and A,, A, are Lagrange’s undetermined multiplies. Baker

and Garber (1978) introduced the parameters x. and y. as
a substitute to Lagrange’s multiplies:
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The unknown functions y(x) and o (x) that minimize the
functional G and produce F;=min (F) should satisfy Eu-
ler’s equations:
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Fig. 1. Notation in numerical procedure

Combining the first Euler’s equation with Egs. (5), (6)
and (7), and rearranging the terms give:

[(x=x)y;+(y—y)Filo’ +2y;(c—u)+2c
—(x=x)(yu’ +yF)+ CspF(y.—y)=0 (10)

where o’'=da/dx; u’' =du/dx; (x., y)=two unknown
geometrical constants; and F;=min (F)=the factor of
safety. This differential equation contains a term related
to Cs, a modification to Leshchinsky’s (1990) solution.

The second Euler’s equation should yield the critical
slip surface y(x). This y(x), however, is limited to log
spiral surfaces which may not always be realistic for
layered slopes. In the generalized approach, an arbitrary
¥(x), which can adapt to the local geology, is specified by
the user. Then, the numerical solution of Eq. (10) gives
og(x) containing three unknown constants Fj, x;, y.. Sub-
stituting g (x) in Egs. (1), (2) and (3), and replacing F; for
F, one gets three nonlinear equations with three
unknowns: Fy, x., V.. Solving these equations yield F; for
the selected y(x). Examining many potential slip surfaces
¥(x) and calculating their respective F;, the surface yield-
ing the minimum F; should be obtained. This absolute
minimal F; and its associated y(x) are considered the
critical results fulfilling the objective of the limiting
equilibrium analysis.

NUMERICAL PROCEDURE

The numerical procedure follows the scheme presented
by Leshchinsky and Huang (1992). Figure 1 shows the no-
tation used in the procedure for the seismic slope stability
analysis. First, the selected slip surface is discretized into
n straight segments (i.e., ‘slices’). Then, Egs. (1), (2) and
(3) can be rewritten in an approximated fashion as:
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where i=slice number; xu, Yoi=coordinates of the center
of the base of slice i; y;=weighted average total unit
weight of slice i; y;=slope elevation avobe Xo; 4xi=
Xi— Xi—1 and y’ =(x,~—x,-_1)/A Xi.

The differential equation describing the total stress dis-
tribution, Eq. (10), can be rewritten for each slice as:

[(Xoi— X)W+ (Yoi— Y ) Fsloi +2y;(oi—u) +2c¢;
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Fig. 2. Computation scheme

= (Xoi—x)(yui +yiF)+ CsyiFs(y.—yo) =0

fori=1,2,--+n (14)

The computation scheme for solving the problem is
presented in Fig. 2. Notice that by using this scheme, the
problem is reduced to three non-linear simultaneous equ-
ations and n simultaneous linear equations.

For given values of ¢;, ¢;, Cs, 7(x), and y(x), with an in-
itial specified value of gy (see Fig. 1), and an initial guess
of F;, x., ¥, the proposed computation scheme is straight-
forward following these main steps:

Step 1: Solve n simultaneous linear equation [Eq. (14)]
for g;(i=1, 2, - -n);

Step 2: Change F;, x. and y. until H=V=M=0; for each
change repeat Step 1. This is done automatically by a rou-
tine that solves simultaneous nonlinear equations;

Step 3: Change either gy or the initial guess of F, x. and
yeuntil ¢; (=0;—w;) is not less than k[ = —(c/tan ¢]; i.e.,
verify that for the obtained roots (F;, x., y.), the normal
stress distribution does not violate Coulomb’s strength
by the inclusion of negative stresses in excess of admissi-
ble values.

Step 4: For the selected slip surface repeat steps 1, 2 and
3, by changing a,, until the lowest F; and admissible g;
are obtained.

COMPARATIVE RESULTS

The presented comparative study is limited to a two-
part study. The first study is to compare the results ob-
tained from the closed-form solution obtained by
Leshchinsky and San (1993) with the generalized (i.e., nu-
merical) approach. This provides some verification of the
accuracy of the formulation of the proposed generalized
approach. The second study compares the generalized ap-

proach with other methods. This provides a sense of
whether the proposed method, which statically is assump-
tion-free, yields a smaller factor of safety (i.e., ‘“better’’
minimum as compared to other rigorous limit equilibri-
um methods where statical assumptions are utilized).
Two slope inclinations are considered in the first study:
a vertical slope and a 1(V):2(H) slope. For the vertical
slope, ¢,=0 and 35° with C;=0.25; for the slope in-
clined at 1:2, ¢,,=0 and 15° with C,=0.10. A total of
four cases are investigated, as summarized in Table 1.
Note that ¢,=tan"" [(tan ¢)/F] is the design (or mobi-
lized) internal angle of friction. By utilizing the same criti-
cal slip surface obtained from the closed form variational
solution, the generalized method yields the same value of
Fs—see Tables 2 and 3. This is despite significant differ-
ences in the values obtained for X, and Y.. Since X, and
Y. represent the pole of the log spiral, it is likely that
more accurate representation of the smooth critical slip
surface, Y(X), in the input data would have resulted
with higher accuracy of X and Y, in the generalized ap-
proach. It is apparent, however, that F; is insensitive with
respect to X and Y.. Since the objective is to find F;, inac-
curacies in X, and Y. are of lesser concern. Figures 3 to 6
show the comparison of the distribution of normal stress
acting over the critical slip surface for all four cases. In
these figures, a nondimensional notation, such as X=x/

H, Y=y/H and S=0¢/yH, is used. H in this nondimen-

sional notation is the height of the slope. The agreement
of the stress distribution obtained numericallv with the

Table 1. Data for investigated cases
Case Slope _c1
Number inclination m N F,yH G
Case 1 Vertical slope 0.0 0.331 0.25
Case 2 Vertical slope 30.0° 0.218 0.25
Case 3 1(V):2(H) 0.0 0.203 0.10
Case 4 1(V):2(H) 15.0° 0.064 0.10

Table 2. Results obtained from variational closed form solution

Case Xe Ye
Number CH 4 s
Case 1 —1.598 3.298 1.000
Case 2 —1.863 5.995 1.000
Case 3 1.922 2.322 1.000
Case 4 1.175 2.310 1.000
Table 3. Results obtained from the generalized approach
Case Xe Ye
= Y =— F‘
Number Xe H ‘T H
Case 1 —3.358 3.592 1.001
Case 2 ~1.650 2.531 1.001
Case 3 1.312 2.496 0.999
Case 4 0.566 2.940 0.999
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¢m =00, Cs =0.10 Morgenstern and Price (1965) 0.64
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of C; (i.e., a value yielding F;=1) obtained by the differ-
ent methods. The presented method yields the most criti-
cal value, i.e., the least value of C; needed to bring the
slope to a limit equilibrium state along the prescribed slip
surface.

CONCLUSIONS

Extension of a generalized limit equilibrium approach
to pseudo-static seismic slope stability analysis was in-
troduced. Formulation of the extension together with a
numerical scheme were briefly presented. It is demonstrat-
ed that for critical slip surfaces obtained from the closed
form variational analysis, the generalized method (for
the same surface) yields the same value of F,;. Compari-
son with other rigorous methods indicates the presented
procedure yields a more critical F;. However, this obser-
vation is limited to one problem. Therefore, further com-
parisons would be needed to draw out firm conclusions.

REFERENCES

1) Baker, R. and Garber, M.(1978): ‘‘Theoretical analysis of the stabil-
ity of slopes,”” Geotechnique, Vol. 28, No. 4, pp. 395-411.

2) Leshchinsky, D. (1990): ‘‘Slope stability. analysis: generalized ap-
proach,”” J. Geotech. Engrg., ASCE, Vol. 116, No. S, pp. 851-867.

3) Leshchinsky, D. and Huang, C. C. (1992): *‘Generalized slope stabil-
ity analysis: interpretation, modification and comparison,” J.
Geotech. Engrg., ASCE, Vol. 118, No. 10, pp. 1559-1576.

4) Leshchinsky, D. and San, K. C.(1993): ‘‘Pseudo-static slope stabil-
ity analysis: design charts,”” J. Geotech. Engrg., ASCE, (in press).

5) Morgenstern, N. R. and Price, V. E., (1965): ‘“The analysis of the
stability of general slip surfaces,” Géotechnique, Vol. 13, No. 1, pp.
79-93.

6) Sarma, S. K. (1973): *‘Stability analysis of embankments and
slopes,”” Geotechnique, Vol. 23, No. 3, pp 423-433.

7) Sarma, S. K. (1979): ‘‘Stability analysis of embankments and
slopes,”” J. Geotech. Engrg., ASCE, pp. 1513-1524.

8) Sarma, S. K. and Barbosa, M. R. (1985): “‘Seismic stability analysis
for rockfill dams with central clay cores,’”’ Géotechnique, Vol. 35,
No. 3, pp. 319-328.



