既製コンクリート杭の機械式継手における引張耐力の検証 (その4 継手の降伏荷重の再評価)

既製コンクリート杭	機械式継手	引張耐力
ペアリング ジョイント	トリプル プレート	ジョイント

1. はじめに

筆者らは、機械式継手の引張耐力について前報¹⁾で報告した。前報では、引張試験における端板のひずみ値から降伏荷 重を決定したが、この方法は安全側の評価ではあるものの鋼 構造等の他の接合方法と比較して極めて厳しい評価方法であった。そこで今回は、新たに行った引張試験の荷重~変位関 係から、slope factor 法²⁾を用いて降伏荷重を決定したので、以 下に報告する。

2. 試験概要

表1に試験体概要を、表2,3に鋼材とコンクリートの材料強度を示す。前報その2と同様に、杭径600mmのPHC杭C種同士をトリプルプレートジョイント(以下TPJと表記)で接続した。ただし、杭の製造会社を前田製管株式会社に変更したため、PC鋼材の配筋が前報と異なっている。このため、杭のPC 鋼材破断荷重(設計値)は、前報では2675kNであったが、今回は2939kNとなった。これは、より継手に厳しい状態で試験することを意図したものである。

図1と写真1に、試験装置の全体を示す。鋼管で製作した 治具に杭を通し、治具と治具の間に設置した油圧ジャッキ4台 で、杭と継手に引張力を与えた。載荷方法は一方向繰返し載 荷とし、杭体の短期許容引張荷重(2287kN)を10回、PC鋼材 の降伏荷重(2639kN)を2回載荷した後に、破壊まで載荷した。

図 2(a)に試験体の全体図を、図 2(b)に拡大図を示す。継 手を含む試験体全体の伸びを変位計 No.11(写真 2)で測定し、

表1 試験体権	概要
---------	----

	端板	SS400 板厚19mm		
TPJ	補強バンド	SS400 編鋼板 板厚4.5mm 長さ200mm		
	側板	SM400A 26×38mm		
	接続プレート	SM400A 17×110mm		
	接続ボルト	六角ボルト 強度区分10.9 基準強度700N/mm ² M14 24本		
	接続ワッシャー	皿ばね座金 S55C M14 24枚		
	規格	杭径600mm PHC杭 C種		
杭体	長さ	2.0m + 2.0m		
	PC鋼材	SBPDL1275/1420 線径10.7mm 23本 配置半径256mm		
	コンクリート	設計基準強度105N/mm ² 肉厚90mm		

		> ↓ 2. ↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓ ↓↓					
		ミルシート			材料訊駛結朱		
	材質	降伏強度	引張強度	破断伸び	降伏強度	引張強度	破断伸び
		(N/mm^2)	(N/mm^2)	(%)	(N/mm^2)	(N/mm^2)	(%)
端板	SS400	276	460	29	287	454	34
補強バンド	SS400	351	444	37	355	439	33
側板	SM400A	300	441	41	325	456	38
接続プレート	SM400A	318	447	32	305	434	37
PC鋼材	SBPDL1275/1420	1400	1477	11	1378	1479	10

表2 鋼材の材料強度

表	3 コン	<i>、</i> クリートの	材料強度	ł
┏	正 综 法 由	やがる物	肉厚相故值	1

「見る」「甘油」

		工相理反	インノ示奴	闪序风俗唱	天殿内序		
	(N/mm ²)	(N/mm^2)	(kN/mm ²)	(mm)	上杭(mm)	下杭(mm)	I
コンクリート	105	115	48.1	90	104	103	1

Verification of tensile strength on the mechanical joints of precast concrete piles (Part4 Reappraisal of yield load)

正会員	〇石川	一真*1,*2	正会員	松江	繁尚*1
正会員	熊谷	雄二*2	正会員	松木	靖紀*2
正会員	八田	宏志*1	正会員	新川	照雄*1
正会員	鈴木	慶吾*1		全田	和之*1

継手の変形を端板内側に設置した変位計 No.1(写真 3)で測 定した。変位計 No.1は、取付冶具の根元が回転する影響を除 去する為に2本の変位計を並列に使用している。

図1 試験装置図

写真1 試験装置全景

図 2(a) 試験体(全体図)

図 2(b) 試験体(拡大図)

写真 2 変位計 No.11

写真 3 変位計 No.1

ISHIKAWA Kazuma, MATSUE Shigehisa, KUMAGAI Yuji, MATSUKI Yasunori, HATTA Hirosi, SHINKAWA Teruo, SUZUKI Keigo, ZENDA Kazuyuki

3. 試験結果

図3(a)に示す、試験体全体(変位計 No.11)の荷重~変位関係は、杭体コンクリー トのひびわれ発生により大きく剛性低下し、その後 3000kN 程度で再度剛性低下して いる。後者の剛性低下は、PC 鋼材の降伏によるものと推定される。最後は、変位が 50mm 以上となって PC 鋼材が破断した。破断箇所は、写真 4(a)に示すように、PC 鋼材の母材部であり、全本数が一気に破断した。破断荷重の実測値は、表4に示す 通り、材料規格値による設計値の 1.13 倍、材料試験結果から求めた計算値の 1.08 倍であった。

一方、図 3(b)に示す、継手(変位計 No.1)の荷重~変位関係は、終局まで小さな 値を保っていた。写真 4(b),(c)は、解体後の金具であり、目視で分かるような変形や 損傷はなかった。

4. 継手の降伏荷重の決定方法

降伏荷重の決定には slope factor 法を用いた。slope factor 法は、荷重~変位関係 における接線剛性が初期剛性の1/3になる時の荷重を降伏荷重とするものである。

図3(c)は、図3(b)の横軸を変更し骨格曲線を強調表示したものである。骨格曲線 上には、データ点をマーカーで示してある。履歴曲線は、繰り返し載荷においてルー プを描いている。また、骨格曲線に棚(荷重は同一のまま、変位が増大する部分)が できている。これらは、前報で示したように端板が局所的に降伏することによるエネル ギー吸収、および機械的に接合していることによる「ズレ」や「馴染み」の影響と考えら れる。なお、図中の初期剛性の直線は、荷重が 500kN と 1500kN のデータ点を結ん で求めたものである。1 サイクル目の荷重~変位関係は、載荷初期に変位が不安定 な部分があり、また載荷途中から剛性が変化するため、上記の方法をとった。(2 サイ クル目の載荷時はこのような影響が少ないため、2 サイクル目の剛性を初期剛性とし て採用する場合もある。)

図 3(d)は、図 3(c)のデータ点間の傾きを接線剛性として求め、荷重との関係を示 したものである。接線剛性(図中の水色線)を見ると、載荷初期と杭体短期荷重以上 ではグラフが激しくブレている。また、杭体短期荷重では、荷重~変位関係の棚の影 響で接線剛性が 0 になっている。このため、移動平均をとって滑らかな線(図中の青 線)とした。(平均したデータの個数は7点である。)なお、図中のピンク色の縦線は、 図 3(c)で求めた初期剛性を 1/3 にした線である。そして、青線とピンク線が交わる荷 重をグラフデータから読み取り、継手の降伏荷重とした。その値は、表4に示す通り、 杭体の短期許容引張荷重の 1.29 倍であった。すなわち、継手の短期引張有効率は 100%以上である。

5. まとめ

引張試験により、最終破壊箇所は杭体である事を確認した。また、継手の荷重~ 変位関係から降伏荷重を決定し、それが杭体の短期許容引張荷重を上回っている 事を確認した。今後は、継手そのものの終局引張耐力を検証する。

参考文献

- 1) 石川一真他:既製コンクリート杭の機械式継手における引 張耐力の検証(その1~3),日本建築学会大会学術講演梗 概集,構造 I, pp.425-430, 2019.9
- 2) 建築研究所、日本鉄鋼連盟:鋼構造建築物の構造性能評価 試験法に関する研究委員会報告書, pp.81-87, 2002.4

継手の

降伏荷重

(実測値)

(kN)

比率

杭体の

短期許容

引張荷重

(設計値) (kN)

2287

表 4 試験結果

PC 鋼材の

破断荷重

(計算値)

(kN)

PC 鋼材の

破断荷重

(実測値)

(kN)

PC鋼材の

破断荷重

(設計値)

(kN)

ひびわれ

荷重

(実測値)

(kN)

*1 継手研究会

- *2無溶接継手杭(PJ)工業会
- *1 Triple Plate Joint Association

*2 Pair-ring Joint Association

3500

図3 試験結果グラフ

比率

(5)/(3) (5)/(4)

破壊状況

.13 1.08 PC鋼材の母材部破断