弾性地盤に支持された小口径杭の座屈に関する模型実験

正会員	○廣瀬	竜也 ^{*1}	同	小梅	慎平 ^{*2}
同	下平	祐司*3	同	伊藤	淳志*4

小口径杭

模型実験

1.はじめに

小規模建築物

小規模建築物を対象とした地盤補強工法として、小口 径の鋼管杭や既製 RC 杭などが用いられている。小規模建 築物基礎設計指針¹⁾では、これらの杭に対して細長比 (本報では、長さ径比と称す)による杭材の許容圧縮力 の低減を与えている。この低減は、旧建築基礎構造設計 規準・同解説²⁾に準じており、打込み杭の施工精度に基 づいて設定されたものといえる。しかし、その根拠につ いては、不明な点が多い。

座屈

そこで、杭の長さ径比による耐力の低下についての力 学的検討を目的として模型座屈実験を行ったので、以下 に報告する。

2.実験概要

実験装置を図1に示す。実験土槽は内径381mm、高さ 700mm、厚さ 15mm の鋼管である。模型杭には、直径 D=5mm、厚さ t=0.8mm、長さ *l*=650mm(長さ径比 *l*/D= 130)のステンレスパイプを使用し、模型地盤は、寒天を 用いて模擬した。ステンレスパイプの材料特性を表 1 に 示す。ヤング係数と降伏強度は、引張試験により求めた。 模擬地盤は、粉寒天と水の配合比率を変えることによっ て、剛性を変化させた。実験の種類と変形係数 E₅₀を表 2 に示す。粉寒天と水の配合比率は、粉寒天に対して質量 比で水 10、20、25、60 の 4 配合とし、これらに加えて、 地盤の無い状態でも実験を行った。E50は、溶かした寒天 をモールドに流し込んで作製した供試体の一軸圧縮試験 より、一軸圧縮強さをひずみが 15%の時として求めた。 この一軸圧縮試験から得られた応力-ひずみ曲線を図 2 に示したが、寒天による模擬地盤は、弾性体と見よかろ う。地盤は、杭の両端をピン支点として、鉛直に実験装 置に設置した後、溶かした寒天を杭の周囲に流し込み、 固まるまで表面を高分子フィルムで覆って 2 日間養生し た。載荷方法は、実験装置の最上部に取り付けたスクリ ュージャッキによる連続載荷とした。載荷速度は、 0.5mm/min とした。杭頭荷重は載荷ロッドとピン支点の間 に取り付けたロードセルで測定し、杭頭変位はスクリュ ージャッキに取り付けたダイヤルゲージで測定した沈下 量からロッドの剛性と載荷荷重より求めたロッドの縮み 量を減じたものとした。

Model Buckling Tests of a Pile with Small Diameter in Elastic Ground.

図1 実験装置(単位:mm)

表1 ステンレスパイプの材料特性

ヤング係数	断面二次モーメント	降伏強度
Ε	Ι	σ _y
(N/mm^2)	(mm^4)	(N/mm^2)
175000	24.1	236

表2 実験の種類と模擬地盤の変形係数

実験 No.	寒天に対する 水の質量比	模擬地盤の変形係数 E_{50} (MN/m ²)
1	(地盤無し)	—
2	10	1.047
3	20	0.444
4	25	0.269
5	60	0.070

3.実験結果

杭頭荷重 P_0 -杭頭変位 S_0 関係をまとめて図 3 に示す。 同図には、オイラー座屈荷重 P_E も示した。No.1 の杭頭荷 重の最大値は、 P_E と良い対応を示している。また、 E_{50} が 大きくなれば、最大杭頭荷重 P_{0max} も大きくなっているこ とがわかる。

各実験の P_{0max} と E_{50} の関係を図 4 に示す。同図には、 式(1)の理論式より求めた弾性地盤上の棒の座屈荷重³⁾も示 した。

$$P_{\rm cr} = \frac{2m^2\pi^2 EI}{l^2} \tag{1}$$

ここで、

- Pcr: 弾性地盤上の棒の座屈荷重 (N)
- E:棒のヤング係数 (N/mm²)
- *I*:棒の断面二次モーメント (mm⁴)
- *l*:棒の長さ (mm)
- m:棒の座屈波形の半波の数で、式(2)に示す近似式 による。

$$m^4 = \frac{\beta l^4}{\pi^4 E I} \tag{2}$$

β:地盤係数 (N/mm²) (たわみが 1 のときの棒の単 位長さ当りの地盤反力)で式(3)による。

$$\beta = k_{h0} \cdot D/1000 \tag{3}$$

D: 杭径(m)

 $k_{h0}: 基準水平地盤反力係数(kN/m³) で式(4)⁴⁾による。$

$$k_{\rm h0} = \alpha \cdot \xi \cdot E_0 B^{-3/4} \tag{4}$$

- α:評価法によって決まる定数(m⁻¹)で一軸圧縮試
 験から求めた地盤の変形係数を用いる場合は、
 80
- ξ : 1.0
- E₀:変形係数(kN/m²)で、一軸圧縮試験によって得られた E₅₀を用いた。
- B:無次元化杭径(杭径を cm で表した無次元数値)

No.5 の実験値は、理論値と良い対応を示したが、No.3 および No.4 の実験値は理論値を、No.5 の実験値は降伏荷 重を下回った。これは、地盤の剛性の評価方法等の影響 によるものと考えられる。

4.まとめ

弾性地盤に支持された杭の模型座屈実験の結果につい て報告した。地盤の剛性が大きくなるほど、杭の座屈荷 重は大きくなることが確認された。

最後に今回の実験を行うにあたり多大のご協力をいた だいた関西大学卒業研究生の日高洋氏および山崎大輝氏 に謝意を表する。

参考文献

- 1) 日本建築学会:小規模建築物基礎設計指針, pp.187-188, 2008
- 日本建築学会:建築基礎構造設計基準・同解説, pp.294-300, 1974
- Stephen P. Timoshenko and James M. Gere : Theory of Elastic Stability, pp.94-98, 1963
- 4) 日本建築学会:建築基礎構造設計指針, pp.277-278, 2001.
- *1 日本建築総合試験所,関西大学大学院
- *2 関西大学大学院
- *3日本建築総合試験所・博士(工学)
- *4 関西大学 准教授・博士(工学)

- 図 4 最大杭頭荷重 P_{0max}一変形係数 E₅₀ 関係
- *1 General Building Research Corporation of Japan
- *2 Graduate School, Kansai Univ.
- *3 General Building Research Corporation of Japan, Dr.Eng.
- *4 Assoc.Prof., Kansai Univ., Dr.Eng.