既製コンクリート杭の曲げ変形性能に関する研究 (その1 SC 杭の曲げせん断実験概要)

SC 杭	曲げせん断試験	正負交番載荷
軸力	曲げ耐力	変形性能

1. はじめに

(一社) コンクリートパイル建設技術協会(COPITA) では,軸力作用下で曲げせん断試験を片持ち梁方式で実施し,スタブと杭の接合方法について報告を行った¹⁾。本 論文では,検討した接合方法を用いて,軸力を変化させた SC 杭の曲げせん断実験概要について報告する。

2. 試験体および加力装置概要

表1に試験体一覧を示す。試験体は杭径 φ 400mm,鋼管厚 6mm (No.7 のみ 4.5mm) の SC 杭とした。設計壁厚を 65mm (No.6 のみ 50 mm) とした。なお,No.6 は杭径 1200mm を想定した 1/3 縮小モデルである。中詰材として No.8 はセメントミルク,No.9 はコンクリートを打設した。 軸力は,杭径 φ 400mm の極限支持力 (N 値を 60,支持力係数 (α) を 400 とした極限支持力 3014kN) および設計曲げ モーメント〜軸力関係で,最大曲げモーメントになる荷重 を考慮し,2000~3500kN (軸力比は 0.23~0.47) とした。 比較のために,軸力無 (No.1) を実施した。表 2 に材料試 験結果を示す。

図 1 に加力装置の概要を示す。加力点位置は杭頭部 (スタブ上面)から 1200mm である。加力方法は正負交 番載荷とし,部材角 2.5,7.5,10,15,20,30,50/1000rad をそれ ぞれ2回ずつ繰返し,耐力が低下するまで載荷した。

図 2 に試験体形状寸法および計測位置を示す。内径 ϕ 432mm の鋼管を設置した鋼製スタブに杭体を差し込み, 隙間にグラウトを充填した。変位計及びひずみゲージは 5 断面設置した。ただし,ひずみゲージの第 2 断面は,杭頭部から 75mm (②下) と 100mm (②上) の 2 箇所とした。杭頭部,ひずみゲージ位置,変形計測区間中心位置の曲げモーメントは,軸力による偏心曲げモーメントを考慮し式(1),(2)で算定し,曲率(φ 1, φ 2) は式(3), (4)で算定した。また,杭頭部鉛直変形量(δ N) は,杭頭部から 200mm 位置の変位(DV-E2,DV-W2)の平均値とした。

表1 試験	体一	覧
-------	----	---

No	杭径	壁厚	鋼管厚	тљ	to/D	.++.∋±:	導入軸力	最大軸力	軸力比
INO.	D(mm)	T(mm)	ts(mm)	1/D	ts/D	甲茚	N(kN)	Nmax(kN)	(N/Nmax)
1	400	65	6	0.16	0.015	兼	0	8817	0.00
4	400	65	6	0.16	0.015	無	2000	8817	0.23
5	400	65	6	0.16	0.015	無	3000	8817	0.34
6	400	50	6	0.13	0.015	無	3500	7407	0.47
7	400	65	4.5	0.16	0.011	無	2000	8413	0.24
8	400	65	6	0.16	0.015	有	3500	8817	0.40
9	400	65	6	0.16	0.015	有	3500	8817	0.40

Study on flexural deformation of precast concrete piles Part 1 Experimental Outline of Bending Shear of Steel Composite Concrete Pile

正会員	○長澤	和彦	正会員	木谷	好伸
	後庵	満丸			

表 2 材料試験結果

			設計値					実測値		
		コンクリート 鋼管			コンクリート		鋼管			
	壁厚	圧縮	ヤング係数	降伏強度	ヤング係数	壁厚	圧縮	ヤング係数	降伏強度	ヤング係数
No.	Т	強度	Ec	σy	Es	T	強度	Ec	σy	Es
		Fc	$\times 10^4$	-	$\times 10^5$		Fc	$\times 10^4$	-	$\times 10^5$
	(mm)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(mm)	(N/mm ²)	(N/mm ²)	(N/mm ²)	(N/mm ²)
1	65	105	4.00	325	2.05	72	115	4.56	505	2.12
4	65	105	4.00	325	2.05	69	111	4.42	505	2.12
5	65	105	4.00	325	2.05	74	115	4.56	505	2.12
6	50	105	4.00	325	2.05	58	115	4.56	505	2.12
7	65	105	4.00	325	2.05	67	115	4.56	452	2.07
8	65	105	4.00	325	2.05	74	122	4.67	408	2.01
9	65	105	4.00	325	2.05	74	122	4.67	408	2.01

「注」No.8の中詰セメントミルクの圧縮強度は27.4N/mm²、ヤング係数は0.995×10⁴N/mm²である。 No.9の中詰コンクリートの圧縮強度は23.7N/mm²、ヤング係数は2.67×10⁴N/mm²である。

NAGASAWA Kazuhiko, KIYA Yoshinobu,and GOAN Mistumaru

$M1=Q\times L+N\times\delta 1\cdots\cdots (1)$
$M2=Q\times(L-L2)+N\times\delta 2=Q\times(L-L2)+N\times(\delta 1-\theta \times L2)\cdots(2)$
M1:杭頭部曲げモーメント(kN・m)
M2:ひずみゲージまたは変位計測区間中心位置の曲げモ
ーメント(kN・m)
N:軸力(kN)
L2 : ひずみゲージ,変位計測区間中心位置(m),
δ1:加力点変位(m),
δ2 : ひずみゲージ,変位計測区間中心位置の変位(m)
θ: 杭頭部から 50mm 位置(DV-E1,DV-W1)の回転角
$\varphi 1 = (SE\bigcirc -SW\bigcirc)/0.4$ ······(3)
$\varphi 2 = (\Delta E - \Delta W) / \Delta L / 0.47 \cdots (4)$
φ1:○断面のひずみゲージから求めた曲率
φ2:変位計から求めた曲率
ΔE : DV-E1~E2 区間または杭頭部~DV-E2 区間変位(mm)
ΔW:DV-W1~W2 区間または杭頭部~DV-W2 区間変位(mm)
$\Delta L: DVE1$ (W1) ~E2 (W2) または抗理部~DVE2 区間理普維mm)
$\delta N = (DV - E2 + DV - W2)/2 \cdots (5)$
δN:杭頭部鉛直変形量(mm)

3. 試験結果

表3に実験で得られた最大曲げモーメント(Mmax)および最大曲げモーメント時の部材角(R_{Mmax})を示す。図4に示すバイリニア型の応力~ひずみ曲線関係を用いた設計値(Mu),材料試験結果を用いた計算値(Mu')も示す。コンクリートの終局ひずみ(ɛu)は,設計値では0.005,計算値では0.003および0.005とした。尚,No.8,9の設計値および計算値は中詰部の耐力を考慮していない。図5,6に杭頭曲げモーメント~軸力関係を示す。図中には設計値,計算値,実験値を記載している。設定した軸力は,設計杭頭曲げモーメント-軸力関係で最大曲げモーメントになる軸力程度である事が確認できる。

図 7 に最大曲げモーメント (Mmax)/計算値 (Mu) お よび設計値 (Mu') ~軸力比関係を示す。軸力比が 0.4 以 下では Mmax/Mu'(ε cu=0.005)比が 1 に近く,それ以上では Mmax/Mu'(ε cu=0.003)比が 1 に近くなる。

表3 試験結果

図7 Mmax/Mu, Mu'~軸力比関係 図8 部材角~軸力比関係

図 8 に最大曲げモーメント時の部材角~軸力比関係を 示す。軸力無(No.1)の部材角は,29.3/1000rad であるが, 軸力有の部材角は,軸力比が高くなるに従い小さくなる傾 向となった。また,No.8,9 のように杭中空部に中詰材を打 設しても部材角はあまり大きくならなかった。

4.おわりに

本論文では,SC 杭の曲げせん断実験方法および試験結果 概要について報告を行った。

謝辞をその6に示す。

参考文献

1) 浅井他 SC 杭の曲げせん断試験, AIJ 大会学術梗概集, pp435-436, 2015

Concrete Pile Installation Technology Association

コンクリートパイル建設技術協会