片持ち梁方式曲げせん断試験による SC 杭の H- φ関係の評価 (その1:試験計画)

杭基礎	二次設計	既製コンクリート杭
		90x · · / / //

1. はじめに

現在、上部構造においては大地震に対する 2 次設計は 一般化している。しかしながら基礎構造においては基礎 の破壊によって人命が失われた事例がないため、2 次設計 は一般化されていない。このため、基礎構造の 2 次設計 手法の確立が急務となっている。

現状の既製コンクリート杭の性能については、強度デ ータは多く蓄積されているが、杭の靱性を対象とした載 荷試験はあまり行われていないため変形性能に関するデ ータは多くない。そこで、筆者らは既製杭の中でも靱性 が高いとされる SC 杭(外殻鋼管付きコンクリート杭)を 対象として単純梁方式の曲げ試験を行い、中空部分をコ ンクリートで充填したものなどの変形性能を確認した。¹⁾ しかし、単純梁方式の載荷方法では試験治具(軸力導 入)の安全の関係から大変形を伴う計測が困難であった。 そのため本研究では、片持ち梁方式の曲げせん断試験を 実施し、試験結果から $M - \phi$ 関係および変形性能につい て評価する。

2. 試験計画

2.1. 試験方法

試験方法は図 1 のように試験体のスタブ部分を下にし て反力フロアーに固定し、軸力導入用油圧ジャッキによ り所定の軸力を導入後、アクチュエータで水平加力する。

載荷パターンは図 2 に示すような変位制御による正負 交番載荷方式とし、図中の P_y は SC 杭の降伏曲げモーメ ントを与える荷重、 P_u は終局曲げモーメントを与える荷 重、 δ_y は P_y 時の載荷点の変位量としている。荷重サイク ルは、1/3 P_{y} ~ P_y までの載荷は各 1 サイクルとし、2 δ_y 以 降の載荷は 3 サイクルとする。 P_u を計測した後は 1 サイ クルごととし、荷重が再び P_y を下回った場合、試験終了 とする。また、10 δ_y まで P_y を下回らなかった場合は、載 荷装置の限界まで正側一方向に連続載荷する。

2.2. 試験種類

表1に試験ケースを示す。試験体は SC 杭の中空部分を 中詰めしていないもの1 体、コンクリートで中詰めした もの3 体の計4 体とした。試験体は全てを杭径 D=400mm, 杭肉厚 T=60mm, 鋼管厚 t_s =6.0mm とした。表1に示す4種 類の試験には、事例の少ない引張方向の軸力を導入した 試験体も含まれている。なお T/D と t_s/T は既存¹⁾の単純 梁方式との比較のため同じ比としている。

Evaluation of M- ϕ relationship of SC pile by the cantilever beam method bending shear test (Part1. Test Plan)

2.3. 計測項目

荷重計測は軸力導入用ジャッキの鉛直荷重と水平加力 用アクチュエータの水平荷重の2つである。図3に計測 位置図を示す。変位計を用いて杭体水平変位を5断面(載 荷点、中間点、杭頭付近3断面)で計測した。杭体鉛直変 位は4断面(載荷点、杭頭付近3断面)で計測した。スタブ にも確認用として鉛直変位を4点、側面に水平変位を1

> Toshihiro TSUKAGOSHI, Shoichi NAKAI, Hitoshi OGURA, Shin NAKAI, Yujiro TANAKA, Toru SEKIGUCHI, Osamu KANEKO, Kazumasa SUGA

点の計 6 点で計測した。杭頭付近の変位計は 50mm 間隔 でスタブ端面より設置した。鋼管のひずみはひずみゲー ジを用いて杭頭付近 4 断面で計測した。ひずみゲージは スタブ内部 25mm 地点に 1 点貼りつけ、そこから 50mm 間隔で 3 点鋼管側面に貼り付けた。これらの計測器から 得られる計測値から曲げモーメント *M* と曲率 ϕ を求めた。 曲げモーメントは軸力と水平荷重、載荷点の水平変位、 鉛直変位を用いて *P*- δ 効果を考慮し算出した。

2.4. 材料試験結果

表 2 に試験体の杭体コンクリート、鋼管、中詰めコン クリートの強度、ヤング係数の材料試験値を示す。

表	2	材料試験値
~	~	

	杭体 コンクリート	鋼管	中詰め コンクリート
強度 (N/mm²)	117	443	29.6
ヤング係数 (N/mm²)	46,600	209,600	23,400

3. 試験結果

写真 1~4 にそれぞれの試験 No.の試験体破壊状況、図 4 に荷重-水平部材角関係を示す。

・試験 No.1 (中詰め無し、軸力 1250kN)

水平荷重の最大値は、306kN であり、荷重ピークまで の履歴ループは比較的安定していることが分かる。しか し、ピーク後の水平荷重の値が急激に減少しており履歴 ループが安定しない。破壊状況は変形が大きく進まない 段階で杭体のコンクリートが圧壊し鋼管が局部座屈した。

・試験 No.2(中詰め有り、軸力 1250kN)

中空部にコンクリートが中詰めしてあるため試験 No.1 の中空のものと比べ水平荷重の最大値が 325kN と多少大 きくなっており、履歴ループは荷重ピーク後も安定して いる。破壊状況は杭体コンクリートが圧壊。中詰コンク リート表面に曲げひび割れ。杭頭周辺で提灯座屈。

・試験 No.3 (中詰め有り、軸力 1875kN)

試験 No.2 に比べて軸力が 1.5 倍と大きいため水平荷重 の最大値が 358kN と大きくなるがその後の減少は大きい。 破壊状況は試験 No.2 と同様。

・試験 No.4(中詰め有り、軸カ-640kN)

導入軸力が引張方向なので水平荷重は 228kN と圧縮軸 力の No.2, 3 のものに比べ小さい。しかし 10 δ, までの荷 重の減少はなく、履歴ループは非常に安定しており、そ の後の連続載荷の段階では荷重が増加し続けている。破 壊状況は杭体コンクリートの圧壊が試験 No.1, 2, 3と異な り杭肉厚全体の圧壊ではなく外側の鋼管付近にとどまっ ている。

* 千葉大学大学院工学研究科

- ** 千葉大学名誉教授
- *** ジャパンパイル (株)
- **** 戸田建設(株)

4.まとめ

本報では今回の試験の計画と結果の一部を述べた。 参考文献

小椋仁志他:単純梁方式による SC 杭の M- φ 関係の評価 (その 1~その 3)
日本建築学会学術講演梗概集 pp429-430, 431-432, 433-434, 2015

図3 計測位置図

Chiba University

- ** Emeritus professor of Chiba University
- *** Japan Pile Corporation **** Toda Corporation
- -736-