
ER Pile 工法の施工方法

鋼管の設置方法

同時建込み工法と打設後圧入工法の2つの工法があります。

同時建込み工法による標準的な施工手順と概要を下記に示します。

同時建込み工法の標準的な施工手順図

同時建込み工法

アースドリル工法、リバース工法およびオールケーシング工法のいずれかの工法によって、鋼管径よりも50mm以上大きな径で掘削した後、鋼管、鉄筋かごの建込みを行い、孔底処理、コンクリート打設を行う工法です。

お問い合わせ先

※本カタログの内容は予告無く変更することがあります。あらかじめご了承下さい。

12,11,07

杭頭部鋼管巻き場所打ちコンクリート杭工法

GBRC 性能証明 第12-16号

概要

ER Pile (Earthquake Resistant Pile) 工法は、杭頭部に平鋼管を設置した耐震場所打ち杭工法です。 杭頭部に設置した鋼管下端部の突起リングで、鋼管と鉄筋コンクリートの一体構造(SRC構造)とする ことにより、杭頭部のせん断・曲げ性能を向上させました。

特長

優れた耐震性能

鋼管と鉄筋コンクリートの複合構造なので、靭性(ねばり 強さ)が高く、地震に強い杭となります。

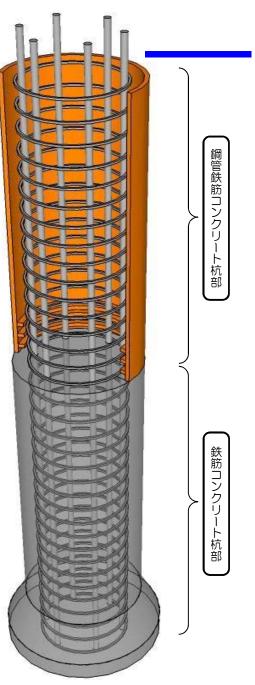
環境に配慮

杭の軸径を細くできるので、掘削残土・コンクリート量を 大幅に低減できる、環境に優しい工法です。

経済的な設計

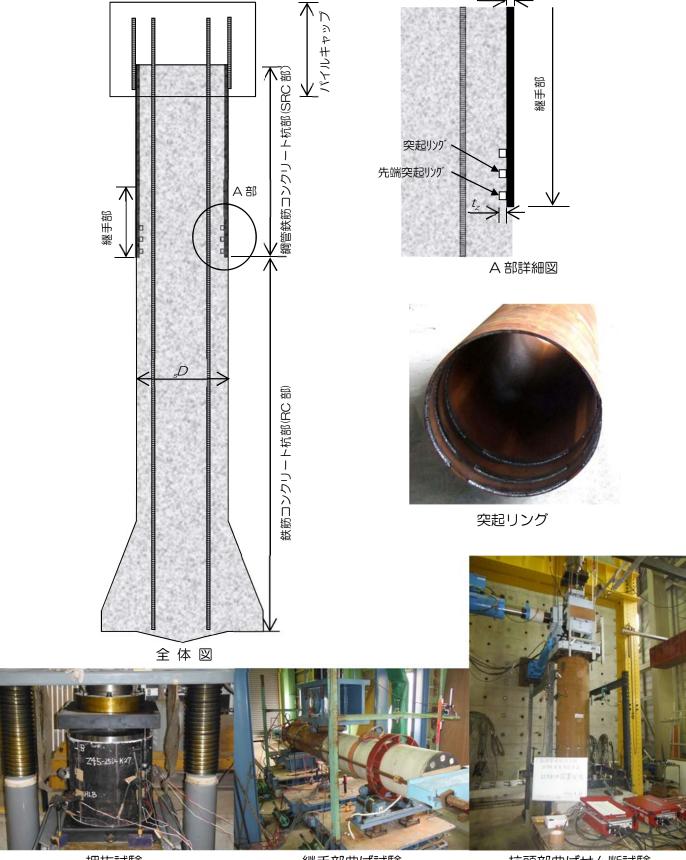
鋼管の径・厚さ・長さ・材質を変えることができるため、 自由度が高く、経済的な設計が可能となります。

確かな品質


使用頻度が高く、実績が豊富な鋼管を使用するので、 信頼性が高く、調達力も優れています。

高強度鋼管に対応

従来の鋼管よりも強度の高い鋼管を使用することが 出来るため、より幅広い設計が可能となります。


高強度コンクリートに対応

設計基準強度を最大で 45N/mm² まで使用することが 出来るため、大きな支持力を採用することができます。

ER Pile 工法の構造

ER Pile 工法は、鋼管下端部に取り付けた突起リングによって、鋼管と鉄筋コンクリートを一体化させる 工法です。

押抜試験

継手部曲げ試験

杭頭部曲げせん断試験

性能証明事項

ER Pile 工法は、下記標準仕様を用いて設計します。

部位	項目標準仕様								
鋼管	直径 _s D	∮700~∮2500mm (併用する掘削工法によって異なる)							
删'旨'	板厚 _s t	9mm 以上(併用する掘削工法によって異なる) ただし、 $_sD/_s$ $ 200$							
突起リング	板厚 t_z	9mm $\leq t_z \leq$ 25mm $t=t=0$, $t=0$ 0 $t=0$ 0							
	段数 <i>n</i>	先端突起リングを含む段数 n は 2 段以上 4 段以下とする。							
コンクリート	設計基準強度 F_c 18 $\leq F_c \leq$ 45N/mm ² (コンクリートの許容応力度は下表とする)								
継手部	長さ	鋼管の下端から上方へ杭径の 1.0 倍かつ主筋の呼び径の 30 倍とする。							
	配筋仕様	主筋・せん断補強筋共に直下の RC 部と同配筋とする。							

・コンクリートの許容応力度

コンクリートの		長期	短期				
種類	圧縮	せん断	圧縮	せん断			
普通コンクリート	<u>F_c</u> 4	$\frac{F_c}{40}$ 又は $\frac{3}{4}$ (0.49+ $\frac{F_c}{100}$) のうちいずれか小さい数値	長期の2倍	長期の 1.5 倍			

*コンクリートの呼び強度は、設計基準強度とする。(構造体強度補正値 $\binom{m}{m}$ は $\frac{d}{d}$ は $\frac{d}{d}$ の $\frac{d}{d}$ \frac{d}

・鋼材の基準強度、引張強度、許容応力度

鋼材の種類		引張強度					
	基準強度		長期	月	短期	規格	
到明12 Cフ作宝 天只	sF	F_U	圧縮、引張り、	曲せん断	圧縮、引張り、	か だ1ロ	
			け	2.021	曲げ、せん断		
SKK400等	235	400				JIS	
SKK490等	325	490	<u>"F</u> 1.5	_sF	長期の	UIS	
JFE-HT570P	400	570	1.5	1.5√3	1.5 倍	国土交通	
NSPP520	400	520				大臣認定	

鋼管の寸法範囲(材質:SKK400、SKK490等)

外径	標準板厚(mm)																
(mm)	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
700	☆	☆	☆	☆	☆												
800	☆	☆	☆	☆	☆	☆	☆										
900	☆	☆	☆	☆	☆	☆	☆	☆	☆								
1000	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆						
1100	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆				
1200	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆		
1300	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
1400	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
1500	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
1600	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
1700	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
1800	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
1900		☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
2000		☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
2100			☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
2200			☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
2300				☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
2400				☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆
2500					☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆	☆

*上記以外の仕様、詳細な規定・設計法等はお問い合わせ下さい。