HITTOP

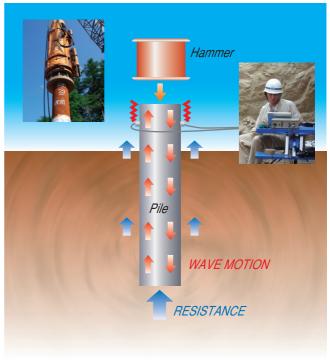
杭の衝撃載荷試験法

概要

叩けば判る杭の支持力

短時間で実施出来る経済的な杭の鉛直載荷試験法です。

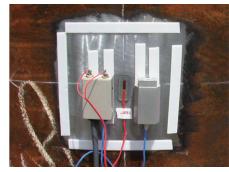
試験方法


ハンマーの打撃による杭の加速度とひずみを計測して、杭の 支持力を推定します。

試験の特徴

- ①既製杭の載荷試験が短時間で出来ます。
- ②反力装置が必要ありません。
- ③試験は狭いヤードでも可能です。
- ④準備が簡便で、1日につき複数箇所の試験が可能です。
- ⑤試験費用が安く済みます。
- ⑥地盤工学会基準「杭の鉛直載荷試験方法・同解説」 (平成14年5月)にて基準化されています。

試験手順


- 1. 杭頭周囲の掘削(杭径の2倍程度を露出させる)
- 2. センサー取付け位置の研磨
- 3. センサーの取付け
- 4. センサーとHITTOP計測器本体の接続
- 5. HITTOP計測器の設定およびチェック
- 6. 予備試験 (ハンマー落下高さ・計測器の確認)
- 7. 本試験 (ハンマーによる打撃)

試験方法のイメージ

HITTOP計測器

加速度計(右)とひずみゲージ(中央)

静的載荷試験とHITTOPの比較

●確認荷重1,000kN未満の場合の比較

試験本数		反力杭本数	試験日数※1	(コスト/本数) 比率※2	
静的載荷試験	1本	8本	3日~4日	5	
HITTOP	3本	不要	1日	1	

※1:準備、試験、撤去の合計日数 ※2:反力杭の工事・材料費含まず

HITTOP計測写真

クッション材使用例 (モンケン質量7t)

最大級油圧ハンマー使用例 (NH-100)

港湾での試験例(NH-20)

堀削孔内での試験例(NH-70)

急斜面での試験例(モンケン質量2t)

河川での試験例(NH-40)

HITTOP主要実績

No	実施年月	杭種・杭長			確認荷重	試験場所	施主
140		DI IO#		1 100			
1	H.13年 5月	PHC杭	φ 450mm	L=13.0m	1,800kN	兵庫県三木市	科学技術庁
2	H.14年12月	PHC杭十SC杭	φ 600mm	L=55.0m	2,200kN	岐阜県養老郡	岐阜県
3	H.15年 3月	鋼管杭	φ 600mm	L=15.0m	1,950kN	大阪府大阪市	大阪市
4	H.15年12月	PHC節杭	<i>ϕ</i> 600-450mm	L=33.0m	1,300kN	山形県東置賜郡	山形県
5	H.16年 6月	鋼管杭	φ 800mm	L=32.7m	5,300kN	北海道野付郡	北海道開発局
6	H.16年12月	鋼管杭	φ 600mm	L=35.5m	1,800kN	熊本県下益城郡	国土交通省
7	H.17年 8月	PHC杭十PRC杭	φ 600mm	L=18.0m	1,300kN	山梨県甲府市	山梨県
8	H.17年12月	鋼管杭	φ 800mm	L=30.0m	2,280kN	広島県廿日市市	広島県
9	H.18年12月	鋼管杭	φ 1000mm	L=31.5m	5,250kN	神奈川県海老名市	日本道路公団
10	H.19年 6月	PHC節杭	φ 500-400mm	L=12.0m	1,070kN	鹿児島県川内市	鹿児島県
11	H.19年 7月	鋼管杭	φ 800mm	L=30.0m	4,630kN	北海道紋別市	北海道開発局
12	H.20年 2月	仮設H形鋼杭 H-4	00×400×13/21	L=36.5m	1,660kN	北海道当別町	北海道開発局